Page 120 -
P. 120

§5. An Explicit 2-Isogeny  97

                                        2

                                     b      y 2    4  2     2
                           2
                               2
                       (y ) = y  1 −      =     x − 2x b + b  ,
                                     x 2    x 4
                     x 6    2  6     4   2 2
                       (y ) = x − 2bx + b x ,
                     y 2
        and
                                   y 6    y 4            y 2
                                                2
                            f (x ) =  6  − 2a  4  + a − 4b  2  ,
                                   x      x            x
                         x 6       4      2 2     2       4

                            f (x ) = y − 2ay x + a − 4b x ,
                         y 2
                                              3
                           6
                                                    2
                              2
                                          2
                                   2
        which boils down to (x /y )(y ) using y = x + ax + bx.
        (5.3) Remark. Next we calculate ˆϕϕ as follows:

                                  2
                           y 2  y(x − b)
             ˆ ϕ(ϕ(x, y)) =ˆϕ  ,
                           x 2    x 2
                           2  2    2  4     2       4     4
                          y (x − b)  x   y(x − b) x    y     2
                      =             ·   ,         ·       − (a − 4b)
                             4x 4     y 4  8x 2    y 4  x 4
                            2    2  2
                          (x − b)  x − b     4     2      4
                      =           ,      · y − a − 4b x      .
                                     2 3
                            4y 2   8x y
        In order to show that ˆϕ(ϕ(x, y)) = 2(x, y), we consider the tangent line to a point
        (x, y) on the curve. To find the slope of the tangent line, we differentiate the equation
        for E[a, b] and we obtain
                             2
                                                          2
                                            2

                    2yy = 3x + 2ax + b = 2(x + ax + b) + (x − b)
                                         2y 2    2
                                       =     + (x − b),
                                          x
        or, in other words,
                                             2
                                  dy    y  x − b
                                     =   +       .
                                  dx   x     2y
        If2(x 1 , y 1 ) = (x 2 , y 2 ) on E[a, b], then the tangent line y = σ(x − x 1 ) + y 1 to
        E[a, b]at (x 1 , y 1 ) must intersect E[a, b]at (x 2 , −y 2 ). In particular, x 2 is a root and
        x 1 is a double root of the cubic equation
                            3
                                 2
                           x + ax + bx = (σ(x − x 1 ) + y 1 ) 2
        or

                                   3
                                                2
                              0 = x + a − σ 2  x +· · ·
        from which we deduce that
   115   116   117   118   119   120   121   122   123   124   125