Page 122 -
P. 122

§5. An Explicit 2-Isogeny  99

                                   ϕ          E

                                 E → E →
                                           {0,(0, 0)}
        is a homomorphism of groups.

        (5.4) Proposition. On the curve E[a, b] we have
                                             b   by

                             (0, 0) + (x, y) =  , −  .
                                             x    x 2
        Proof. For (x 1 , y 1 )+(0, 0) = (x 2 , y 2 ) consider the line y = (x 1 /x 1 )x through (0, 0)
        and (x 1 , y 1 ). For the third point of intersection we compute

                             2
                            y
                             1  x = x + ax + bx
                                      3
                                 2
                                           2
                            x 2
                             1
                                            2
                                           y
                                      3     1      2
                                 0 = x −     − a x + bx.
                                           x 2
                                            1
        This means that
                                        2
                                             2
                          y 2 1        y − ax − x 3 1  bx 1  b
                                             1
                                        1
                     x 2 =  2  − a − x 1 =   2     =   2  =   .
                          x                 x         x     x 1
                           1                 1         1
                                        2
        Moreover, y 2 =−(y 1 /x 1 )x 2 =−by 1 /x which proves the proposition.
                                        1
        (5.5) Remark. We can show that ϕ((x, y) + (0, 0)) = ϕ(x, y) by the direct calcu-
        lation
                                 2    2     2 2      2     2
                            −by/x       b y     x      y
                                     =              =
                             (b/x) 2     x 4    b 2   x 2
        and
                      2     2  2      2        2    2
                −by/x    b /x − b    x   by  bx − b       y     2
                                   =    ·              =     x − b .
                      (b/x) 2        b 2  x 2   x 2      x 2
           In order to study the image of ϕ, we introduce the following homomorphism
        from the curve to the multiplicative group of the field modulo squares.
                                                      ∗ 2
                                                  ∗
        (5.6) Proposition. The function α : E[a, b] → k /(k ) defined by α(0) = 1,
                         ∗ 2
                                                 ∗ 2
        α((0, 0)) = b mod(k ) , and α((x, y)) = x mod(k ) is a grouphomomorphism.
        Proof. For three points (x 1 , y 1 ), (x 2 , y 2 ),and (x 3 , y 3 ) on a line y = λx + ν and on
        the curve E[a, b] the roots of the cubic equation
                                      2   3     2
                              (λx + ν) = x + ax + bx
   117   118   119   120   121   122   123   124   125   126   127