Page 121 -
P. 121

98     4. Families of Elliptic Curves and Geometric Properties of Torsion Points

                                             2
                                  2x 1 + x 2 = σ − a.
        We just calculated σ above so that
                                  2
                            x 2 = σ − a − 2x 1
                                             2
                                        2   !
                                  y 2  s − b
                                       1
                              =     +          − a − 2x 1 .
                                  x 1   2y 1
        Dropping the subscript 1 on x 1 and y 1 ,wehave
                               2    2   3        2    2    3
                            x − b     x − bx + y − ax − 2x
                       x 2 =        +
                              4y 2              x 2
                               2    2
                            x − b
                         =
                              4y 2
                    3
              2
                         2
        using y = x + ax + bx. This is just the x-coordinate in the above calculation
        of ˆϕ(ϕ(x, y)). For the y-coordinate we use y = σ(x − x 1 ) + y 1 and hence y =
                  2
        (y 1 /x 1 + (x − b)/2y 1 )(x 2 − x 1 ) + y 1 . Again dropping the subscript 1 on x 1 and y 1
                  1
        and substituting the above expression for x 2 , we obtain
                               2          2    2
                          y   x − b     x − b
                    y 2 =   +                   − x  + y
                          x     2y        4y 2
                             2    3    2     2    2  2 2     2
                         x x − b   + 2y  x − b  − 4x y  x − b
                      =
                                          8xy 3
                                     2    2    2 2     2    2 2
                                 x x − b  + 2x y − 2by − 4x y

                           2
                      = x − b
                                              8xy 3
                                 x  x − b  − 2y   y − ax
                                  2     2    2  2     2  2
                           2
                      = x − b                             .
                                             2 3
                                           8x y
                  3
                                 2
                            2
        Now using x − bx = y − ax − 2bx,wehave
                    2
              3          2     2  2
            x − bx   − 2y  y − ax

                  4     2   2           2 4       3    2 2      4     2 2
               = y − 2y   ax + 2bx + a x + 4abx + 4b x     − 2y + 2ax y

                    4        3    2          2 4       3    2 2
               =−y − 4bx x + ax + bx + a x + 4abx + 4b x
                   "               #
                     4     2      4
               =− y − a − 4b x       .
        Hencewededucethat2(x 1 , y 1 ) =ˆϕϕ(x 1 , y 1 ).
           Although we have not checked directly that ϕ is a group homomorphism, the
        previous relation ˆϕ(ϕ(x, y)) = 2(x, y) and the following useful results show that the
        composite
   116   117   118   119   120   121   122   123   124   125   126