Page 198 -
P. 198

§4. The Differential Equation for ℘(z)  175

                                 1            2k−1
                               =   −    G k (L)z  ,
                                 z
                                     2≤k
                               −2k
        where G k (L) =      ω    converges for k ≤ 2 by (3.1). Observe that the odd
                        ω∈L−0
        powers for k ≥ 2 sum to zero
                                         −2k+1
                                       ω      = 0.
                                  ω∈L−0
        Since ℘(z) =−ζ (z) we derive the Laurent series expansions for ℘(z) and ℘ (z) by


        differentiation.
        (4.1) Laurent Series Expansions.
                                     1            2k−1
                             ζ(z, L) =  −   G k (L)z  ,
                                     z
                                         2≤k
                                  1                    2k−2
                         ℘(z, L) =  +    G k (L)(2k − 1)z  ,
                                  z 2
                                      2≤k

                              −2
                                                           2k−3
                     ℘ (z, L) =  +     G k (L)(2k − 1)(2k − 2)z  ,
                               z 3
                                   2≤k
                              −2k
        where G k (L) =      ω   .
                        ω∈L−0
           In order to derive the differential equation for ℘(z), we write out the first few
        terms of the expansions at 0 for the elliptic functions ℘(z), ℘ (z), and various com-

        binations of these functions:
                                 1       2       4
                         ℘(z) =    + 3G 2 z + 5G 3 z +· · · ,
                                z 2
                                  2
                                                   3
                         ℘ (z) =−  3  + 6G 2 z + 20G 3 z +· · · ,
                                  z
                                 4   24G 2
                             2
                        ℘ (z) =  6  −  2  − 80G 3 +· · · ,
                                z     z
                                        1
                             3
                                                       2
                        4℘(z) = 4℘(z)     + 6G 2 + 10G 3 z +· · ·
                                       z 4
                                 4   36G 2
                              =    +      + 60G 3 +· · · ,
                                z 6   z 2
                                60G 2          2 2
                     60G 2 ℘(z) =     + 180 (G 2 ) z +· · · ,
                                  z 2
        Hence the following equation
                              2       3
                         ℘ (z) = 4℘(z) − 60G 2 ℘(z) − 140G 3
   193   194   195   196   197   198   199   200   201   202   203