Page 202 -
P. 202

§5. Preliminaries on Hypergeometric Functions  179

        Exercises

         1. Prove the following determinantal relation


                                 ℘(z 1 )   ℘ (z 1 )
                                                   1

                                 ℘(z 2 )   ℘ (z 2 )  1 = 0.




                               ℘(z 1 + z 2 ) −℘ (z 1 + z 2 ) 1

         2. For σ(z) as introduced in Exercise 3, §3, show that
                                           σ(z 1 − z 2 )σ(z 1 + z 2 )
                            ℘(z 1 ) − ℘(z 2 ) =−  2    2
                                              σ(z 1 ) σ(z 2 )
            and
                                             σ(2z)

                                     ℘ (x) =−   4 .
                                             σ(z)
         3. Next derive the relation

                           ℘ (z 1 )
                                    = ζ(z 1 − z 2 ) + ζ(z 1 + z 2 ) − 2ζ(z 1 ).
                        ℘(z 1 ) − ℘(z 2 )
         4. Derive the addition formula


                                                1 ℘ (z 1 ) − ℘ (z 2 )
                         ζ(z 1 + z 2 ) = ζ(z 1 ) + ζ(z 2 ) +  .
                                                2 ℘(z 1 ) − ℘(z 2 )
            From this formula derive the addition formulas in (4.4).
        §5. Preliminaries on Hypergeometric Functions

        In order to find the complex torus associated with an elliptic curve, we will use some
        special functions which we introduce in this section.
        (5.1) Definition. The gamma function 
(s) is defined for Re(s)> 0bythe follow-
        ing integral:
                                         ∞      dx
                                       (
                                            s −x
                                
(s) =     x e    .
                                        0        x
           Due to the exponential factor e −x  the integral at ∞ converges for all s and for
        Re(s)> 0 the factor x s−1  is integrable near 0.
        (5.2) Remark. For Re(s)> 1 an easy integration by parts, which we leave as an
        exercise, gives the relation

                                
(s) = (s − 1)
(s − 1).
                     ∞ −x

        Since 
(1) =   e  dx = 1, we prove inductively that for a natural number n we
                     0
        have
   197   198   199   200   201   202   203   204   205   206   207