Page 256 - Academic Press Encyclopedia of Physical Science and Technology 3rd Chemical Engineering
P. 256

P1: GLM/GLT  P2: GLM Final
 Encyclopedia of Physical Science and Technology  En006G-249  June 27, 2001  14:7







               48                                                                        Fluid Dynamics (Chemical Engineering)


                 Cartesian:                                        Spherical Polar:
                 x Component                                       r Component

                                                       ∂p
                       ∂v x   ∂v x    ∂v x    ∂v x                                                     2    2
                    ρ     + v x   + v y   + v z    =−                 ∂v r   ∂v r  v θ ∂v r  v φ  ∂v r  v + v φ
                                                                                                       θ
                       ∂t      ∂x      ∂y     ∂z       ∂x          ρ      + v r  +       +          −
                                                                       ∂t     ∂r    r ∂θ   r sin θ ∂φ    r


                         ∂τ xx  ∂τ yx  ∂τ zx
                      −       +     +       + ρg x       (14)            ∂p     1 ∂    2      1   ∂
                          ∂x     ∂y    ∂z                            =−     −   2    r τ rr +       (τ rθ sin θ)
                                                                         ∂r    r ∂r         r sin θ ∂θ
                 y Component

                                                                           1
                                                                               ∂τ rφ  τ θθ + τ φφ
                                                       ∂p              +           −           + ρg r       (20)
                       ∂v y   ∂v y    ∂v y    ∂v y
                    ρ     + v x   + v y   + v z    =−                    r sin θ ∂φ      r
                       ∂t      ∂x      ∂y     ∂z       ∂y
                                                                   θ Component

                         ∂τ xy  ∂τ yy  ∂τ zy
                      −       +     +       + ρg y       (15)
                          ∂x     ∂y    ∂z                            ∂v θ    ∂v θ  v θ ∂v θ  v φ  ∂v θ  v r v θ
                                                                   ρ     + v r   +       +          +
                 z Component                                          ∂t     ∂r    r ∂θ    r sin θ ∂φ  r

                                                                        2
                       ∂v z    ∂v z   ∂v z    ∂v z    ∂p               v cot θ     1 ∂p                  1   ∂
                    ρ      + v x  + v y   + v z   =−                 −  φ      =−      −   1 ∂   r τ rθ +
                                                                                                 2

                        ∂t     ∂z     ∂y      ∂z      ∂z                 r         r ∂θ    r ∂r        r sin θ ∂θ
                                                                                            2

                          ∂τ xz  ∂τ yz  ∂τ zz                                      1  ∂τ θφ  τ rθ  cot θ
                      −       +     +       + ρg z       (16)        × (τ θθ sin θ) +      +    −     τ φφ + ρg θ
                          ∂x     ∂y    ∂z                                        r sin θ ∂φ  r     r
                 Cylindrical Polar:                                                                         (21)
                 r Component                                       φ Component
                                         2
                  ∂v r    ∂v r  v θ ∂v r  v θ  ∂v r    ∂p
               ρ      + v r  +       −    + v z    =−                ∂v φ    ∂v φ  v θ ∂v φ  v φ  ∂v φ  v φ v r
                   ∂t     ∂r    r ∂θ    r     ∂z       ∂r          ρ     + v r   +       +          +
                                                                      ∂t      ∂r   r ∂θ    r sin θ ∂φ   r


                      1 ∂       1 ∂τ rθ  τ θθ  ∂τ rz                                   1   ∂p
                  −      (rτ rr ) +   −    +       + ρg r  (17)      +  v θ v φ  cot θ  =−    −   1 ∂    2
                      r ∂r      r ∂θ     r    ∂z                        r            r sin θ ∂φ  r ∂r  r τ rφ
                                                                                                  2
                 θ Component

                                                                       1 ∂τ θφ    1  ∂τ φφ  τ rφ  2 cot θ

                                                         1 ∂p        +       +           +     +      τ θφ + ρg φ
                  ∂v θ    ∂v θ  v θ ∂v θ  v r v θ  ∂v θ                r ∂θ     r sin θ ∂φ  r      r
               ρ      + v r  +       +      + v z    =−
                   ∂t     ∂r    r ∂θ     r      ∂z       r ∂θ
                                                                                                            (22)

                     1 ∂   2     1 ∂τ θθ  ∂τ θz
                 −       (r τ rθ ) +   +       + ρg θ     (18)     Two terms in Eqs. (17) and (18) are worthy of special
                      2
                     r ∂r        r ∂θ     ∂z                                            2
                                                                 note. In Eq. (17) the term ρv /r is the centrifugal “force.”
                                                                                        θ
                                                                 That is, it is the effective force in the r direction arising
                 z Component
                                                                 from fluid motion in the θ direction. Similarly, in Eq. (18)

                       ∂v z   ∂v z  v θ ∂v z  ∂v z     ∂p        ρv r v θ /r is the Coriolis force, or effective force in the θ
                    ρ     + v r   +       + v z    =−
                       ∂t      ∂r   r ∂θ      ∂z       ∂z        direction due to motion in both the r and θ directions.
                                                                 Both of these forces arise naturally in the transformation
                                                                 of coordinates from the Cartesian frame to the cylindrical

                          1 ∂       1 ∂τ θz  ∂τ zz               polar frame. They are properly part of the acceleration
                      −      (rτ rz ) +   +       + ρg z  (19)
                          r ∂r      r ∂θ     ∂z                  vector and do not need to be added on physical grounds.
   251   252   253   254   255   256   257   258   259   260   261