Page 271 - Academic Press Encyclopedia of Physical Science and Technology 3rd Polymer
P. 271

P1: GPQ Final Pages/GNB  P2: GTV
 Encyclopedia of Physical Science and Technology  En012c-604  July 26, 2001  16:2






               780                                                                              Polymers, Thermally Stable


                  TABLE I Comparison of Properties of Xylylene Polymers with Epoxy and Silicone Materials a
                                                               Polymonochloro-  Polydichloro-
                                                 Poly-p-xylylene  p-xylylene   p-xylylene
                            Property              (Parylene N)  (Parylene C)  (Parylene D)  Epoxy     Silicon
                  Density                           1.11           1.289        1.418     1.11–1.40  1.05–1.23
                  Tensile strength (MPa)             45             69           76        28–90       6–7
                  Elongation at break (%)            30            200           10         3–6        100
                  24-hr water absorption (%)        0.06           0.01          —        0.08–0.15  0.12 (7 days)
                                           ◦
                  Melting or heat distortion temperature ( C)  405  280         >350      Up to 220  Up to 300
                                          / C)
                  Linear coefficient of expansion (10 −5 ◦  3.5     6.9           —         4.5–6.5    25–30
                  Dielectric strength (V/mil)       7000           5600          5500       2300       2000
                               ◦
                  Volume resistivity 23 C 50% RH ( -cm)  1 × 10 17  6 × 10 16  2 × 10 16   1 × 10 14  1 × 10 15
                               ◦
                  Surface resistivity 23 C 50% RH ( -cm)  10 13    10 14       5 × 10 16   5 × 10 3   3 × 10 13
                  Dielectric constant
                   60 Hz                            2.65           3.15          2.84       4.2        2.6
                     3
                   10 Hz                            2.65           3.10          2.82       3.9        2.6
                     6
                   10 Hz                            2.65           2.95          2.80       3.4        2.6
                  Dissipation factor
                   60 Hz                            0.0002         0.020        0.004       0.03      0.0005
                     3
                   10 Hz                            0.0002         0.019        0.003       0.03      0.0004
                     6
                   10 Hz                            0.0006         lhl0.013       0.002       0.04      0.0008
                    a
                     Reprinted with permission from Critchley, J. P., Knight, G. J., and Wright, W. W. (1983). “Heat Resistant Polymers—Technologically
                  Useful Materials,” Plenum, New York. Copyright 1983 Plenum Press.

               the polymers are characterized by a combined low solubil-  aramid system in order to obtain the maximum thermal
               ity and high melt temperature, most prominent in wholly  stability benefits from high polymer melt temperatures
               para- and least in wholly meta-oriented systems. Vari-  while increasing the most important feature in the spin-
               ous approaches have been applied toward “tailoring” the  ning of high-quality fiber, that is solubility. Typically, the






























                      FIGURE 2 Thermal stability envelopes for poly-p-xylylenes in inert and oxidizing atmospheres. (A) From Wurtz
                      reaction and (B) from pyrolysis of p-xylene. [Reprinted with permission from Critchley, J. P., Knight, G. J., and Wright,
                      W.  W.  (1983).  “Heat  Resistant  Polymers—Technologically  Useful  Materials,”  Plenum,  New  York.  Copyright  1983
                      Plenum Press.]
   266   267   268   269   270   271   272   273   274   275   276