Page 112 - Energy from Toxic Organic Waste for Heat and Power Generation
P. 112
96 Energy from Toxic Organic Waste for Heat and Power Generation
[18] Ouadi M, Brammer JG, Kay M, Hornung A. Fixed bed downdraft gasification of paper
industry wastes. Appl Energy 2013;103:692–9.
[19] Elbersen HW, Christian DG, El Bassem N, Alexopoulou E, Pignatelli V, Van Den
Berg D. Switchgrass (Panicum virgatum L.) as an alternative energy crop in Europe:
initiation of a productivity network. 2001; Final report FAIR 5-CT97-3701: 91.
[20] Zhang L, Xu CC, Champagne P. Energy recovery from secondary pulp/paper-mill
sludge and sewage sludge with supercritical water treatment. Bioresour Technol
2010;101(8):2713–21.
[21] Rönnlund I, Myréen L, Lundqvist K, Ahlbeck J, Westerlund T. Waste to energy by
industrially integrated supercritical water gasification—effects of alkali salts in residual
by-products from the pulp and paper industry. Energy 2011;36(4):2151–63.
[22] Strezov V, Evans TJ. Thermal processing of paper sludge and characterisation of its
pyrolysis products. Waste Manag 2009;29(5):1644–8.
[23] Lou R, Wu S, Lv G, Yang Q. Energy and resource utilization of deinking sludge pyrol-
ysis. Appl Energy 2012;90(1):46–50.
[24] Ouadi M, Brammer JG, Yang Y, Hornung A, Kay M. The intermediate pyrol-
ysis of de-inking sludge to produce a sustainable liquid fuel. J Anal Appl Pyrolysis
2013;102:24–32.
[25] Ridout AJ, Carrier M, Görgens J. Fast pyrolysis of low and high ash paper waste sludge:
influence of reactor temperature and pellet size. J Anal Appl Pyrolysis 2015;111:64–75.
[26] Yang Y, Brammer JG, Ouadi M, Samanya J, Hornung A, Xu HM, Li Y. Characteri-
sation of waste derived intermediate pyrolysis oils for use as diesel engine fuels. Fuel
2013;103:247–57.
[27] Reckamp JM, Garrido RA, Satrio JA. Selective pyrolysis of paper mill sludge by using
pretreatment processes to enhance the quality of bio-oil and biochar products. Biomass
Bioenergy 2014;71:235–44.
[28] Mendez A, Paz-Ferreiro J, Araujo F, Gasco G. Biochar from pyrolysis of deinking pa-
per sludge and its use in the treatment of a nickel polluted soil. J Anal Appl Pyrolysis
2014;107:46–52.
[29] Jiang J, Ma X. Experimental research of microwave pyrolysis about paper mill sludge.
Appl Therm Eng 2011;31(17):3897–903.
[30] Meyer T, Edwards EA. Anaerobic digestion of pulp and paper mill wastewater and
sludge. Water Res 2014;65:321–49.
[31] Elliott A, Mahmood T. Pretreatment technologies for advancing anaerobic digestion of
pulp and paper biotreatment residues. Water Res 2007;41(19):4273–86.
[32] Lin Y, Wang D, Wu S, Wang C. Alkali pretreatment enhances biogas production in the
anaerobic digestion of pulp and paper sludge. J Hazard Mater 2009;170(1):366–73.
[33] Yunqin L, Dehan W, Lishang W. Biological pretreatment enhances biogas production in
the anaerobic digestion of pulp and paper sludge. Waste Manag Res 2010;28(9):800–10.
[34] Stephenson R, Mahmood T, Elliot A, O’Connor B, Eskicioglu C, Saha M, Ericksen B.
How microsludge (r) and anaerobic digestion or aerobic stabilization of waste activated
sludge can save on sludge management costs. J Sci Technol For Prod Process 2012;2(1):
26–31.
[35] Tyagi VK, Lo SL, Rajpal A. Chemically coupled microwave and ultrasonic pre-
hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation
and anaerobic digestion. Environ Sci Pollut Res 2014;21(9):6205–17.
[36] Kinnunen V, Ylä-Outinen A, Rintala J. Mesophilic anaerobic digestion of pulp and
paper industry biosludge–long-term reactor performance and effects of thermal pre-
treatment. Water Res 2015;87:105–11.
[37] Karlsson A, Truong XB, Gustavsson J, Svensson BH, Nilsson F, Ejlertsson J. Anaerobic
treatment of activated sludge from Swedish pulp and paper mills–biogas production
potential and limitations. Environ Technol 2011;32(14):1559–71.