Page 241 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 241

226   Principles and Methods

        species; SOD, superoxide dismutase; UFP, ultrafine particles; UGT,
        UDP-glucoronosyltransferase; ∆ψm, mitochondrial membrane potential.


        Acknowledgements
        The work described in this chapter was supported by the US Public Health
        Service Grants, U19 A1070453 (funded by National Institute of Allergy
        and Infectious Diseases and National Institute of Environmental and
        Health Science), RO1 ES10553 (National Institute of Environmental and
        Health Science) R01 ES 015498 and RO1 ES10253, as well as the US
        Environmental Protection Agency STAR award to the Southern California
        Particle Center RD-83241301. This work has not been subjected to the
        Environmental Protection Agency for peer and policy review and therefore
        does not necessarily reflect the views of the agency; no official endorsement
        should be inferred. We also thank DARPA(F49620-03-1-0365; JX, JIY) and
        NIH (GM066466; JIY) for funding.

        References
         1. Oberdorster G., Utell M.J. Ultrafine Particles in the Urban Air: To the Respiratory
           Tract—and Beyond? Environmental Health Perspectives 2002;110(8):A440–A441.
         2. Donaldson K., Tran C.L. Inflammation Caused by Particles and Fibers. Inhalation
           Toxicology 2002;14(1):5–27.
         3. Service R.F. Nanotoxicology. Nanotechnology Grows Up. Science 2004;304(5678):
           1732–1734.
         4. Donaldson K., Stone V., Clouter A., Renwick L., MacNee W. Ultrafine Particles.
           Occupational & Environmental Medicine 2001;58(3):211–216.
         5. Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology:  An Emerging
           Discipline Evolving from Studies of Ultrafine Particles.  Environmental Health
           Perspectives 2005;113(7):823–839.
         6. Donaldson K., Stone V., Tran C.L., Kreyling W., Borm P.J. Nanotoxicology.
           Occupational & Environmental Medicine 2004;61(9):727–728.
         7. Nel  A.  Atmosphere.  Air Pollution-Related Illness: Effects of Particles.  Science
           2005;308(5723):804–806.
         8. Oberdorster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., et al.
           Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology
           2004;16(6–7):437–445.
         9. Donaldson K., Stone V. Current Hypotheses on the Mechanisms of Toxicity of Ultrafine
           Particles. Annali dell’Istituto Superiore di Sanita. 2003;39(3):405–410.
        10. Donaldson K., Stone V., Seaton A., MacNee W. Ambient Particle Inhalation and the
           Cardiovascular System: Potential Mechanisms. Environmental Health Perspectives
           2001;109 Suppl 4,523–527.
        11. Nel A., Xia T., Madler L., Li N. Toxic Potential of Materials at the Nanolevel. Science
           2006;311(5761):622–627.
        12. Oberdorster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K.,
           et al. Principles for Characterizing the Potential Human Health Effects from Exposure
           to Nanomaterials: Elements of a Screening Strategy. Particle and Fibre Toxicology 2005;28.
        13. Mecke A., Majoros I.J., Patri A.K., Baker J.R., Jr., Holl M.M., Orr B.G. Lipid Bilayer
           Disruption by Polycationic Polymers: The Roles of Size and Chemical Functional
           Group. Langmuir 2005;21(23):10348–10354.
        14. Vertegel A.A., Siegel R.W., Dordick J.S. Silica Nanoparticle Size Influences the
           Structure and Enzymatic Activity of Adsorbed Lysozyme. Langmuir 2004;20(16):
           6800–6807.
   236   237   238   239   240   241   242   243   244   245   246