Page 244 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 244
Principles and Procedures to Assess Nanomaterial Toxicity 229
52. Brook R.D., Franklin B., Cascio W., Hong Y., Howard G., Lipsett M., et al. Air Pollution
and Cardiovascular Disease: A Statement for Healthcare Professionals from the
Expert Panel on Population and Prevention Science of the American Heart Association.
Circulation 2004;109(21):2655–2671.
53. Hajdena-Dawson M., Zhang W., Contag P.R., Wong R.J., Vreman H.J., Stevenson
D.K., et al. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription:
Correlative Cell Culture Assays Guide in Vivo Imaging. Molecular Imaging 2003;2(3):
138–149.
54. Zhang W., Feng J.Q., Harris S.E., Contag P.R., Stevenson D.K., Contag C.H. Rapid
in Vivo Functional Analysis of Transgenes in Mice Using Whole Body Imaging of
Luciferase Expression. Transgenic Research 2001;10(5):423–434.
55. Zhang W., Contag P.R., Hardy J., Zhao H., Vreman H.J., Hajdena-Dawson M., et al.
Selection of Potential Therapeutics Based on in Vivo Spatiotemporal Transcription
Patterns of Heme Oxygenase–1. Journal of Molecular Medicine 2002;80(10):655–664.
56. Withey G.D., Lazareck A.D., Tzolov M.B., Yin A., Aich P., Yeh J.I., et al. Ultra-High
Redox Enzyme Signal Transduction Using Highly Ordered Carbon Nanotube Array
Electrodes. Biosensors & Bioelectronics 2006;21(8):1560–1565.
57. Poole L.B., Claiborne A. Interactions of Pyridine Nucleotides with Redox Forms of the
Flavin-Containing NADH Peroxidase from Streptococcus Faecalis. Journal of
Biological Chemistry 1986;261(31):14525–14533.
58. Yeh J.I., Claiborne A., Hol W.G. Structure of the Native Cysteine-Sulfenic Acid Redox
Center of Enterococcal NADH Peroxidase Refined at 2.8 A Resolution. Biochemistry
1996;35(31):9951–9957.
59. Yeh J.I., Zimmt M.B., Zimmerman A.L. Nanowiring of a Redox Enzyme by Metallized
Peptides. Biosensors & Bioelectronics 2005;21(6):973–978.
60. Shim M., Shi Kam N.W., Chen R.J., Li Y., Dai H. Functionalization of Carbon
Nanotubes for Biocompatibility and Biomolecular Recognition. Nano Letters
2002;2(4):285–288.
61. Bradley K., Briman M., Star A., Gruner G. Charge Transfer from Adsorbed Proteins.
Nano Letters 2004;4(2):253–256.
62. Gruner G. Carbon Nanotube Transistors for Biosensing Applications. Analytical and
Bioanalytical Chemistry 2006;348(2), 322–335.
63. Star A., Bradley K., Gabriel J.-C., Gruner G. Nanoelectronic Sensors: Chemical
Detection Using Carbon Nanotubes. Polymeric Materials Science and Engineering
2003;89204.
64. Kohli P., Harrell C.C., Cao Z, Gasparac R., Tan W., Martin C.R. DNA-Functionalized
Nanotube Membranes with Single-Base Mismatch Selectivity. Science 2004;305(5686):
984–986.
65. Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991;354(6348):56–58.
66. Li J., Papadopoulos C., Xu J.M., Moskovits M. Highly Ordered Carbon Nanotube
Arrays for Electronics Applications. Applied Physics Letters 2006;75(3):367–369.
67. Xiao Y., Patolsky F., Katz E., Hainfeld J.F., Willner I. Plugging into Enzymes:
Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science 2003;299(5614):
1877–1881.