Page 383 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 383

368   Environmental Applications of Nanomaterials

         6. Eikerling, M., A.A. Kornyshev, and U. Stimming, Electrophysical properties of poly-
           mer electrolyte membranes: a random network model. Journal of Physical Chemistry
           B, 1997. 101(50): p. 10807–10820.
         7. Sumner, J.J., et al., Proton conductivity in Nafion117 and in a novel bis[(perfluo-
           roalkyl)sulfonyl]imide ionomer membrane. Journal of the Electrochemical Society,
           1998. 148(1): p. 107–110.
         8. Zawodzinski Jr., T.A., et al., Determination of water diffusion coefficients in perfluo-
           rosulfonate ionomeric membranes. J. Phys. Chem. B, 1991. 95: p. 6040–6044.
         9. Sone, Y., P. Ekdunge, and D. Simonsson, Proton conductivity of Nafion 117 as meas-
           ured by a four-electrode AC impedance method. J. Electrochem. Soc., 1996. 143(4):
           p. 1254–1259.
        10. Brandon, N.P., S. Skinner, and B.C.H. Steele, Recent advances in materials for fuel
           cells. Annual Review of Materials Research, 2003. 33(1): p. 183–214.
        11. Bailly, C., et al., The sodium salts of sulfonated poly(aryl-ether-ether-ketone) (PEEK):
           preparation and characterization. Polymer, 1987. 28(6): p. 1009–1016.
        12. Nolte, R., et al., Partially sulfonated poly(arylene ether sulfone)—A versatile proton
           conducting membrane material for modern energy conversion technologies. Journal of
           Membrane Science, 1993. 83(2): p. 211–220.
        13. Gupta, B., F.N. Buchi, and G.G. Scherer, Cation exchange membranes by pre-irradiation
           grafting of styrene into FEP films.  I.  Influence of synthesis conditions. Journal of Polymer
           Science Part A-Polymer Chemistry, 1994. 32(10): p. 1931–1938.
        14. Wang, C.Y., Fundamental Models for Fuel Cell Engineering. Chem. Rev., 2004. 104(10):
           p. 4727.
        15. Bhave, R.R., Inorganic Membranes: Synthesis, Characteristics and Applications. 1991,
           New York: Van Nostrand Reinhold.
        16. Cai, X.M., et al., Porous metallic films fabricated by self-assembly of gold nanoparticles.
           Thin Solid Films, 2005. 491(1–2): p. 66–70.
        17. Hu, X.G., et al., Fabrication, characterization, and application in SERS of self-
           assembled polyelectrolyte-gold nanorod multilayered films. Journal of Physical
           Chemistry B, 2005. 109(41): p. 19385–19389.
        18. Fujii, T., et al., The sol-gel preparation and characterization of nanoporous silica
           membrane with controlled pore size. Journal of Membrane Science, 2001. 187(1–2):
           p. 171–180.
        19. Callender, R.L., et al., Aqueous synthesis of water soluble alumoxanes: environmen-
           tally benign precursors to alumina and aluminum-based ceramics. Chemistry of
           Materials, 1997. 9: p. 2418–2433.
        20. Rose, J., et al., Synthesis and characterization of carboxylate-FeOOH nanoparticles
           (ferroxanes) and ferroxane-derived ceramics. Chemistry of Materials, 2002. 14(2):
           p. 621–628.
        21. Landry, C.C., and A.R. Barron, From minerals to materials: synthesis of alumoxanes
           from the reactions of boehmite with carboxylic acids. Journal of Materials Chemistry,
           1995. 5(2): p. 331–341.
        22. Cortalezzi, M.M., et al., Characteristics of ceramic membranes derived from alumox-
           ane nanoparticles. Journal of Membrane Science, 2002. 205: p. 33–43.
        23. Grahl, C.L., Ceramic opportunities in fuel cells. Ceramic Industry, 2002. 152(6): p. 35–39.
        24. Nogami, M., R. Nagao, and C. Wong, Proton conduction in porous silica glasses with
           high water content. J. Phys. Chem. B, 1998. 102: p. 5772–5775.
        25. Vichi, F.M., M.T. Colomer, and M.A. Anderson, Nanopore ceramic membranes as novel
           electrolytes for proton exchange membranes. Electrochem. Solid State Lett., 1999.
           2(7): p. 313–316.
        26. Bensasson, R.V., et al., Transmembrane electron-transport mediated by photoexcited
           fullerenes. Chemical Physics Letters, 1993. 210(1–3): p. 141–148.
        27. Garaud, J.L., et al., Photoinduced electron-transfer properties of porous polymer mem-
           branes doped with the fullerene C(60) associated with phospholipids. Journal of
           Membrane Science, 1994. 91(3): p. 259–264.
        28. Hwang, K.C., and D. Mauzerall, Photoinduced electron-transport across a lipid bilayer
           mediated by C70. Nature, 1993. 361(6408): p. 138–140.
        29. Miyatake, K., and M. Watanabe, Recent progress in proton conducting membranes for
           PEFCs. Electrochemistry, 2005. 73(1): p. 12–19.
   378   379   380   381   382   383   384   385   386   387   388