Page 384 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 384
Membrane Processes 369
30. Hummer, G., J.C. Rasaih, and J.P. Noworyta, Nature, 2001. 414: p. 188–190.
31. Naguib, N., et al., Observation of water confined in nanometer channels of closed
carbon nanotubes. Nano Letters, 2004. 4(11): p. 2237–2243.
32. Walters, D.A., et al., In-plane-aligned membranes of carbon nanotubes. Chemical
Physics Letters, 2001. 338(1): p. 14–20.
33. Kanzow, H., C. Lenski, and A. Ding, Physical Review B, 2001. 6312: p. 5402.
34. Hinds, B.J., et al., Aligned multiwalled carbon nanotube membranes. Science, 2004.
303(5654): p. 62–65.
35. Holt, J.K., et al., Fabrication of a carbon nanotube-embedded silicon nitride membrane
for studies of nanometer-scale mass transport. Nano Letters, 2004. 4(11): p. 2245–2250.
36. Majumder, M., et al., Nanoscale hydrodynamics: enhanced flow in carbon nanotubes.
Nature, 2005. 438(7070): p. 44.
37. Wang, Y.Y., et al., Hollow to bamboolike internal structure transition observed in
carbon nanotube films. Journal of Applied Physics, 2005. 98: p. 014312.
38. Biryulin, Y.F., et al., Fullerene-modified dacron track membranes and adsorption of
nitroxyl radicals on these membranes. Technical Physics Letters, 2005. 31(6):
p. 506–508.
39. Antonucci, P.L., et al., Investigation of a direct methanol fuel cell based on a compos-
ite Nafion ®-silica electrolyte for high temperature operation. Solid State Ionics,
1998. 125(1–4): p. 431–437.
40. Costamagna, P., et al., Nafion ®115/zirconium phosphate composite membranes for
operation of PEMFCs above 100 °C. Electrochimica Acta, 2002. 47(7):
p. 1023–1033.
41. Boysen, D.A., et al., Polymer solid acid composite membranes for fuel-cell applications.
Journal of the Electrochemical Society, 2000. 147(10): p. 3610–3613.
42. Wu, M., and L. Shaw, Electrical and mechanical behaviors of carbon nanotube-filled
polymer blends. Journal of Applied Polymer Science, 2006. 99(2): p. 477–488.
43. Sung, J.H., et al., Nanofibrous membranes prepared by multiwalled carbon nanotube/
poly(methyl methacrylate) composites. Macromolecules, 2004. 37(26): p. 9899–9902.
44. Girishkumar, G., et al., Single-wall carbon nanotube-based proton exchange membrane
assembly for hydrogen fuel cells. Langmuir, 2005. 21(18): p. 8487–8494.
45. Tang, H.L., et al., Self-assembling multi-layer Pd nanoparticles onto Nafion(TM)
membrane to reduce methanol crossover. Colloids and Surfaces a-Physicochemical
and Engineering Aspects, 2005. 262(1–3): p. 65–70.
46. Jiang, S.P., et al., Self-assembly of PDDA-Pt nanoparticle/Nafion membranes for
direct methanol fuel cells. Electrochemical and Solid State Letters, 2005. 8(11):
p. A574–A576.
47. Polotskaya, G., Y. Biryulin, and V. Rozanov, Asymmetric membranes based on fullerene-
containing polyphenylene oxide. Fullerenes Nanotubes and Carbon Nanostructures,
2004. 12(1–2): p. 371–376.
48. Luo, M.L., et al., Hydrophilic modification of poly(ether sulfone) ultrafiltration mem-
brane surface by self-assembly of TiO 2 nanoparticles. Applied Surface Science, 2005.
249(1–4): p. 76–84.
49. Kwak, S.Y., S.H. Kim, and S.S. Kim, Hybrid organic/inorganic reverse osmosis (RO)
membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO 2
nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane.
Environmental Science & Technology, 2001. 35(11): p. 2388–2394.
50. Bae, T.H., and T.M. Tak, Effect of TiO 2 nanoparticles on fouling mitigation of ultra-
filtration membranes for activated sludge filtration. Journal of Membrane Science,
2005. 249(1–2): p. 1–8.
51. Lehmam, M., H. Brunner, and G.E.M. Tovar, Selective separations and hydrodynamic
studies: a new approach using molecularly imprinted nanosphere composite mem-
branes. Desalination, 2002. 149(1–3): p. 315–321.
52. Cortalezzi, M.M., C. V., and M.R. Wiesner, Controlling nanoparticle template mor-
phology: effect of solvent chemistry. Colloid and Interface Science, 2005. 283:
p. 366–372.
53. Kralchevsky, P.A., et al., Capillary meniscus interaction between colloidal particles
attached to a liquid-fluid interface. Journal of Colloid and Interface Science, 1992.
151(1): p. 79–94.

