Page 137 - Essentials of applied mathematics for scientists and engineers
P. 137

book   Mobk070    March 22, 2007  11:7








                                                          SOLUTIONS WITH LAPLACE TRANSFORMS         127
                   Consequently

                                                             τ




                                 u(ς, τ) = f (τ = 0)v(ς, τ) +  f (τ − τ )v(ς, τ )dτ
                                                           τ =0

                                                          ∞
                                                   2 f (0)     (−1) n  2  2
                                        = ς f (τ) +               e −n π τ  sin(nπς)
                                                     π         n
                                                         n=1
                                                                  τ
                                                ∞
                                             2     (−1) n                     −n π τ
                                                                                2
                                                                                  2


                                          +             sin(nπς)     f (τ − τ )e    dτ
                                             π      n
                                               n=1
                                                                τ =0

                        This series converges rapidly for large values of τ. However for small values of τ,it
                   converges slowly. There is another form of solution that converges rapidly for small τ.
                        The Laplace transform of v(ζ, τ)can be writtenas
                                  √        √       √            √       √
                             sinh ς s    e ς s  − e −ς s   1 e ς s  − e  −ς s
                                  √ =       √      √   =   √          √
                             s sinh  s   s (e ς s  − e − s )  se  s  1 − e −2 s
                                          1      ς s  −ς s        −2 s    −4 s   −6 s
                                                                    √
                                                         √
                                                 √
                                                                            √
                                                                                   √
                                      =    √   e   − e       1 + e    + e     + e     + ...
                                         se  s
                                         1              √            √
                                           ∞
                                      =        e −(1+2n−ς) s  − e −(1+2n+ς) s
                                         s
                                          n=0
                                                        √
                                                       =k s
                        The inverse Laplace transform of  e  is the complimentary error function, defined by
                                                        s
                                                                    √
                                                                  k/2 τ
                                                  √           2          2
                                           erfc(k/2 τ) = 1 − √        e −x  dx
                                                               π
                                                                  x=0
                        Thus we have
                                            ∞
                                                     1 + 2n − ς          1 + 2n + ς
                                  v(ς, τ) =     erfc     √        − erfc     √
                                                        2 τ                 2 τ
                                           n=0
                   and this series converges rapidly for small values of τ.
                   Example 8.4. Next we consider a conduction problem with a convective boundary condition:
                                                  u τ = u ςς
                                                  u(τ, 0) = 0
                                                  u ς (τ, 1) + Hu(τ, 1) = 0
                                                  u(0,ς) = ς
   132   133   134   135   136   137   138   139   140   141   142