Page 141 - Essentials of applied mathematics for scientists and engineers
P. 141

book   Mobk070    March 22, 2007  11:7








                                                          SOLUTIONS WITH LAPLACE TRANSFORMS         131
                        Using the boundary conditions

                                      U ς (0, s ) = 0,  A = 0
                                                1   Q           √           1 − Q
                                      U(1, s ) =  =    + B cosh( s )  B =       √
                                                s    s                    s cosh( s )
                                                            √
                                           Q    1 − Q cosh(ς s )
                                      U =     +             √
                                           s      s    cosh( s )
                                          √
                        The poles are (with  s = x + iy)
                                           √                       √      2n − 1
                                      cosh  s = 0or     cos y = 0   s =±         π i
                                                                             2
                                                      2
                                              2n − 1

                                                        2
                                      s =−             π =−λ   2 n  n = 1, 2, 3,...
                                                2
                   or when s = 0.
                        When s = 0 the residue is

                                                        lim        s τ
                                                Res =       sU(s )e  = 1
                                                      s → 0
                                                                 √
                        The denominator of the second term is s cosh  s and its derivative with respect to s is
                                                            √
                                                      √       s     √
                                                  cosh  s +    sinh  s
                                                             2
                                     2
                        When s =−λ ,wehavefor theresidue of thesecondterm
                                     n
                                                                    √
                                              lim      (1 − Q)cosh(ς s )    s τ
                                           s →−λ  2       √     √ s   √    e
                                                  n  cosh   s +   sinh  s
                                                                2
                   and since


                                              √           2n − 1
                                          sinh  s = i sin         π = i(−1) n+1
                                                            2
                   and

                                                    √          2n − 1
                                              cosh(ς s ) = cos         ςπ
                                                                  2
                   we have
                                √              2n−1                        n     2n−1
                          cosh(ς s )     cos     ςπ        2n−1 2  2  2(−1) cos     ςπ     2n−1 2  2
                      L −1      √   =          2        e −(  2 ) π τ  =         2      e  −(  2 ) π τ
                           s cosh  s    2n−1  π i (−1) n+1                (2n − 1)π
                                                2
                                          2
   136   137   138   139   140   141   142   143   144   145   146