Page 139 - Essentials of applied mathematics for scientists and engineers
P. 139

book   Mobk070    March 22, 2007  11:7








                                                          SOLUTIONS WITH LAPLACE TRANSFORMS         129
                   which yields


                                                   x = 0
                                                   y cos y + H sin y = 0

                        The solution for the second term of U is
                                                                     √
                                             lim  (s − iy)(1 + H)sinh( s ς)e  s τ
                                                    √       √            √
                                           s → iy s   s cosh( s ) + H sinh  s )

                   or
                                                             s τ
                                                     P(ς, s )e
                                                      Q (ς, s )

                                                                s =−y  2
                   where

                                √       √           √
                         Q = s    s cosh  s + H sinh  s

                              √       √           √        1       √    1     √      H       √

                         Q =    s cosh  s + H sinh  s + s  √ cosh    s +  sinh  s + √ cosh     s
                                                          2 s           2           2 s
                              √
                                s (1 + H)    √     s     √

                         Q =             cosh  s +   sinh  s
                                   2               2
                               √              √
                                 s (1 + H)   s  s      √

                         Q =              −       cosh  s
                                    2        2H
                                         H(H + 1) + y 2
                                 2
                       Q (s =−y ) =                    iy cos(y)
                                            2H
                   while
                                                                  2
                                           2
                                  P(s =−y ) = (1 + H)i sin(yς)e −y τ
                                                            2
                                                                                        2
                                         −(1 + H)sin(y n ς)e −y τ  −2H(H + 1) sin(y n ς)e  −y τ
                                                               =
                              u n (ς, τ) =                                     2
                                           H(H+1)+y  2  y n cos(y n )  [H(H + 1) + y ]y n cos(y n )
                                              2H

                                             2(H + 1)     sin ς y n −y τ
                                                                    2
                                      =                          e  n
                                          H(H + 1) + y 2   sin y n
                        The solution is therefore
                                                   ∞
                                                        2(H + 1)
                                                                              2
                                                                    sin ς y n −y τ
                                         u(ς, τ) =                         e  n
                                                      H(H + 1) + y 2  sin y n
                                                  n=1
   134   135   136   137   138   139   140   141   142   143   144