Page 95 - Essentials of applied mathematics for scientists and engineers
P. 95

book   Mobk070    March 22, 2007  11:7








                                                 SOLUTIONS USING FOURIER SERIES AND INTEGRALS        85
                   Equating coefficients of sine and cosine terms

                                                     2
                                                2
                                           E 1 (ω − ω )cos(ωτ) = 0     ω  = ω n
                                                n
                                                                4C                              (5.63)
                                                2    2
                                           E 2 (ω − ω )sin(ωτ) =    sin(ωτ)
                                                n
                                                                 ω n
                   Thus
                                                             4C
                                        E 1 = 0     E 2 =                 ω  = ω n              (5.64)
                                                              2
                                                                   2
                                                         ω n (ω − ω )
                                                              n
                   Combining the homogeneous and particular solutions
                                                                         4C
                                  B 2n−1 = D 1 cos(ω n τ) + D 2 sin(ω n τ) +    sin(ωτ)         (5.65)
                                                                              2
                                                                         2
                                                                    ω n (ω − ω )
                                                                         n
                   The initial conditions at τ = 0 require that
                                                   D 1 = 0

                                                           4C(ω/ω n )                           (5.66)
                                                   D 2 =−
                                                                    2
                                                               2
                                                          ω n (ω − ω )
                                                               n
                   The solution for B 2n−1 is
                                               4C        ω
                                  B 2n−1 =                 sin(ω n τ) − sin(ωτ) ,ω  = ω n       (5.67)
                                          ω n (ω − ω )  ω n
                                               2
                                                    2
                                                    n
                   The solution is therefore
                                                ∞
                                                    sin(ω n ξ)   ω
                                   y(ξ, τ) = 4C                    sin(ω n τ) − sin(ωτ)         (5.68)
                                                       2
                                                            2
                                                   ω n (ω − ω )  ω n
                                               n=1          n
                   When ω = ω n the above is not valid. The form of the particular solution should be chosen as
                                             B P = E 1 τ cos(ωτ) + E 2 τ sin(ωτ)                (5.69)


                   Differentiating and inserting into the differential equation for B 2n−1
                                                                                           4C
                         2                2                  2       2
                   [E 1 τω + 2E 2 ω n − E 1 τω ]cos(ω n τ) + [E 2 τω − E 2 τω − 2E 1 ω n ]sin(ω n τ) =  sin(ω n τ)
                                                                     n
                                          n
                                                             n
                         n
                                                                                           ω n
                                                                                                (5.70)
                   Thus
                                                                    4C
                                                 E 2 = 0    E 1 =−                              (5.71)
                                                                   2ω 2
                                                                      n
   90   91   92   93   94   95   96   97   98   99   100