Page 139 - Essentials of physical chemistry
P. 139

The Second and Third Laws of Thermodynamics                                 101

                                    2   2
            (10) 7. Given a ¼ 3.610 atm L =mol and b ¼ 0,0429 L=mol for the van der Waals equation of CO 2 ,
                  calculate the pressure P in atm of 5 mol of CO 2 in a 5 L container at 708C.
                                                                              (P ¼ 25.81 atm)
            (10) 8. Show that (C P   C V ) ¼ R for an ideal gas.
                                                                           (See chapter notes)

            Physical chemistry 303      Summer 2009                  D. Shillady, Professor
            (Points)                 Midterm examination         (Attempt all problems) 120 min

            (15) 1. Using h visc  ¼ (1=2)n*m  vl ¼ 2:08   10  4  poise at 258C and 1 atm pressure for O 2 , compute
                  d, l, Z 1 , and Z 11 . (Atomic weight for O ¼ 15.9994 g=mol) (d ¼ 3.573   10  8  cm,
                                                                            3
                                               9
                                                  1
                  l ¼ 716   10  8  cm, Z 1 ¼ 6.203   10 s , Z 11 ¼ 7.634   10 28  binary=cm s)
            (15) 2. Using the Boltzmann distribution, set up the distribution function for the speed of a gas
                  molecule in any direction; derive formulas for   v, v rms , and the most probable speed a.
                                                                           (See chapter notes)
            (10) 3. Calculate   v for He (atomic weight 4.002503) gas molecules at 258C in mph.
                                                                               (2809.22 mph)
            (10) 4. Show (C P   C V ) ¼ R for an ideal gas.                 (See chapter notes)
                             0
                                                                                        0
            (10) 5. Compute DH 298  for the reaction 3(HC   CH ! C 6 H 6(l) given the data DH comb
                                                  0
                  (HC   CH) ¼ 1301:1 kJ=mol and DH comb  (C 6 H 6 ) ¼ 3267:6 kJ=mol.
                                                                          (DH 0  ¼ 635:7 kJ)
                                                                             298
            (15) 6. Find P c , V c , and T c for a van der Waals gas and show the law of corresponding states.
                                                                           (See chapter notes)
            (15) 7. Calculate the temperature of air compressed adiabatically in a one-cylinder diesel
                                   3
                                                                  3
                  engine from 1050 cm at 228C and 1 atm pressure to 50 cm . Given C V ¼ (5=2)R, compute
                  moles air, Q, W, DH, and DU for this compression.
                       (Q ¼ 0, W ¼ DU, DU ¼ 151.78 cal ¼ 636. 0 J, DH ¼ 212:5 cal ¼ 889:1, n ¼ 0.0434)
            (10) 8. Calculate the entropy of fusion (DS fus ) of a compound at 08C given that its DH fus is 39 kJ=mol
                  at 1568C (mp) and the molar C P values are 28.0 J=8C for the liquid and 20.0 J=8C for the
                  solid.                                           (DS fus ¼ 87:263 J= K at 08C)

                                                                              DS took 80 min

            PROBLEMS

            5.1 Estimate the absolute entropy of 1-deutero-naphthalene at 18K using S ¼ k B ln W.
            5.2 Calculate the efficiency of a internal combustion heat engine operating with a heat source at
               10008C and discarding exhaust heat at 7008C.
            5.3 Calculate the entropy of mixing for a mixture of n-heptane and n-octane versus mole fraction
               and sketch a graph showing DS mix for mole fractions of n-heptane as 0.01, 0.25, 0.4, 0.5, 0.6,
               0.75, and 0.99 on the same graph using a different scale on the Y-axis plot
               DG mix ¼ DH mix   T DS mix assuming DH mix ¼ 0 and T ¼ 258C. Scale DS mix   100.
            5.4 Derive all eight of the basic thermodynamic equations starting from the first law, the definition
               of H and dS ¼ dq rev =T. Derive the four Maxwell relationships using the idea of reversing the
               order of differentiation.
                                                 1
            5.5 Calculate DS 298 for the reaction H 2 (g) þ O 2 (g) ! H 2 O (liq) at 298.158K using the data in
                                                 2
               Table 5.1. Then use that value to correct the value of DS 298 to DS 1000 at 10008K using the
               polynomials in Table 4.4.
   134   135   136   137   138   139   140   141   142   143   144