Page 120 - Fiber Fracture
P. 120
FRACTURE PROCESSES IN OXIDE CERAMIC FIBRES 1 05
Fibers, pp. 11 1-164, A.R. Bunsell and M.H. Berger (Eds.). Marcel Dekker, New York, NY.
Birchall, J.D. (1983) The preparation an properties of polycrystalline aluminium oxide fibres. Trans. J. Br:
Cerum. Soc., 82: 143.
Corman, G.S. (1993) Creep of yttrium aluminum garnet single crystals. J. Muter: Sci., 12: 379.
Delkglise, F., Berger, M.H., Jeulin, D. and Bunsell, A.R. (2001) Microstructural stability and room
temperature properties of the Nextel 720 fibre. J. Eur: Cerum. Soc., 21: 569.
DelCglise, F., Berger, M.H. and Bunsell, A.R. (2002) Microstructural evolution under load and high
temperature deformation mechanisms of a mullite/alumina fibre. J. Eur: Cerum Soc., 22: 1501.
Dhingra, A.K. (1980) Alumina fiber FP. Philos. Tm. R. SOC. London A, 294,411.
Gooch, D.J. and Groves, G.W. (1973) The creep of sapphire filament with orientations close to the c-axis. J.
Mater: Sci., 8: 1238.
Hay, R.S., Boakye, E.E., Petry, M.D., Berta, Y., Von Lehmden, K. and Welch, J. (1999) Grain growth and
tensile strength of 3M Nextel 720 after thermal exposure. Cerum. Eng. Sci. Proc., 20(3), 153.
Johnson, D.D. (1981) Nextel 312 ceramic fibre from 3M. J. Coated Fabrics, 11: 282.
Johnson, D.D., Holtz, A.R. and Grether, M.F. (1987) Properties of Nextel 480 ceramic fibers. Cerum. Eng.
Sci. Proc., 8(7-8): 744.
Kelly, A. (1996) The 1995 Bakerian Lecture. Composite material. Philos. Trm. R. SOC. London, 354 1841.
Lavaste, V., Berger, M.H., Bunsell, A.R. and Besson, J. (1995) Microstructure and mechanical characteristics
of alpha alumina fibres. J. Muter: Sci., 30 4215.
Lewis, M.H., York, S., Freeman, C., Alexander, I.C., AI-Dawery, I., Butler, E.G. and Doleman, P.A. (2000)
Oxyde CMCs; novel fibres, coatings and fabrication procedures. Cerum. Eng. Sci. Proc., 21(3): 535.
Morscher, G.N. and Chen, K.C. (1994) Creep resistance of developmental polycrystalline yttrium-aluminum
garnet fibers. Ceram. Eng. Sci. Proc., 15(4): 755.
Morscher, G.N. and DiCarlo, J.A. (1992) A simple test for thermomechanical evaluation of ceramic fibers.
J. Am Cerurn. Soc., 75(1): 136.
Poulon-Quintin, A., Berger, M.H. and Bunsell, A.R. (2001) Mechanical and microstructural characterization
of the Nextel 650 alumina-zirconia fibre. In: Proceedings of the 4th Conference on High Temperature
and Ceramic Matrix Composites, October 1-3, 2001, Munich (in press).
F‘ysher, D.J. and Tressler, RE. (1992) Creep rupture studies of two alumina-based ceramic fibres. J. Muter:
Sci,, 27: 423.
Romine, J.C. (1987) New high-temperature ceramic fiber. Cerum Eng. Sci. Proc., 8(7-8): 755.
Saitow, Y., Iwanaga, K., Itou, S., Fukumoto, T. and Utsunomiya, T. (1992) Preparation of continuous high
purity a-alumina fiber. In: Proceedings of the 37fh hternutionul SAMPE Symposium, March 9-12, pp.
808-819.
Sayir, A. and Farmer, S.C. (1995) Directionally solidified mullite fibers. In: Ceramic Mutrin Composites
- Advanced High Temperature Structuml Materials, Muter: Res. SOC. Proc., 365, pp. 1 1-21.
Taylor, M.D. (1999) Chemistry of alumina. In: Fine Ceramic Fibers, pp. 63-109, A.R., Bunsell and M.H.
Berger (Us.). Marcel Dekker, New York, NY.
Whalen, P.J., Narasimhan, D., Gasdaska, C.G., O’Dell, E.W. and Moms, R.C. (1991) New high-temperature
oxide composite reinforcement material: Chrysoberyl. Cerum Eng. Sci. Proc., 12(9-IO): 1774.
Wilson, D.M. and Visser, L.R. (2000) Nexte 650 ceramic oxide fiber: new alumina-based fiber for high
temperature composite reinforcement. Ceram. Eng. Sci. Proc., 21(3): 363.
Wilson, D.M., Lueneburg, D.C. and Lieder, S.L. (1993) High temperature properties of Nextel 610 and
alumina based nanocomposite fibers. Cemm. Eng. Sei. Proc., 14(7-8): 609.
Wilson, D.M., Lieder, S.L. and Lueneburg, D.C. (1995) Microstructure and high temperature properties of
Nextel 720 fibers. Cerum. Eng. Sci. Proc., 16(5): 1005.