Page 282 - Fiber Fracture
P. 282

Fiber Fracture
             M. Elices and J. Llorca (Editors)
             0 2002 Published by Elsevier Science Ltd. All rights reserved




                   FRACTURE OF HIGHLY ORIENTED,

                 CHAIN-EXTENDED POLYMER FIBRES



                                          J.W.S. Hearle


                                The Old vicamge, Mellol; Stockport SK6 5LX, UK






             Introduction  .....................................                 267
                Fibre types  ...................................                 267
                Structure, Modulus and Strength ........................         269
             Experimental Observations  .............................            272
                Tensile Failures .................................               272
                Creep Rupture  .................................                 273
                Tensile Fatigue  .................................               275
                Surface Abrasion  ................................               276
                Axial Compression, Bending and Flex Fatigue  ................  276
             Theoretical Approaches ...............................              277
                Failure in Shear .................................               277
                Time and Temperature  .............................              279
                Axial Compression Fatigue  ..........................            28 1
             References.  .....................................                  285






             Abstract
               Polymeric high-modulus, high-tenacity fibres have a  structure consisting of  highly
             oriented, chain-extended, linear  macromolecules. Para-aramid, aromatic copolyester,
             PBO  and  PIPD  fibres  are  made  by  liquid-crystal  routes,  but  HMPE  is  gel-spun.
             Deviations from an ideal structure reduce stresses below the ideal values. Tensile failure
             is due to  axial splitting. HMPE fails by  creep rupture under  moderate loads. These
             fibres suffer from surface abrasion, flex fatigue and axial compression fatigue. Failure
             in shear is described qualitatively. Time and temperature dependence has been modelled
             by statistical mechanics. In fibre assemblies, axial compression fatigue is modelled in
             terms of  axial  and transverse compressive forces on  yarns  and  axial slip. The same
   277   278   279   280   281   282   283   284   285   286   287