Page 344 - Fiber Fracture
P. 344

326                                                             C. Viney


                Dunaway,  D.L.,  Thiel,  B.L.,  Srinivasan, S.G.  and  Viney,  C.  ( l995a)  Characterizing  the  cross-sectional
                 geometry of thin, non-cylindrical, twisted fibers (spider silk). J. Mater: Sci., 30 4161-4170.
               Dunaway, D.L.,  Thiel, B.L. and Viney, C.  (1995b) Tensile mechanical property evaluation of natural and
                 epoxide-treated silk fibers. J. Appl. Polym. Sci., 58: 675-683.
                Foelix, R.F.  (1982) Biology of Spiders. Harvard University Press, Cambridge, MA.
                Fornes, R.E.,  Work, R.W.  and Morosoff, N.  (1983) Molecular orientation of spider silks in the natural and
                 supercontracted states. J. Polym. Sci. Polym. Phys. Ed., 21:  1 163-1 172.
                Fung, Y.C.  (1 993) Biomechunics: Mechanicul Properties of Living  ESSKeS.  Springer, New York, NY.
                Garrido, M.A.,  Elices, M.,  Viney, C.  and Pkrez-Rigueiro, J.  (2002) Active control of  spider silk strength:
                 comparison of drag line spun on vertical and horizontal surfaces. Polymer, 43:  1537-1540.
                Gorham, S.D. (1991) Collagen. In: Biomaterials: Novel Materials fmm Biological Sources, pp.  55-122,  D.
                 Byrom (Ed.). Stockton Press, New York, NY.
                Gosline, J.M., Denny, M.W.  and DeMont, M.E. (1984) Spider silk as rubber. Nature, 309: 551-552.
                Gosline, J.M.,  Pollak, C.C.,  Guerette, P.A.,  Cheng, A.,  DeMont, M.E.  and Denny, M.W.  (1994) Elastomeric
                 network  models for the  frame  and  viscid  silks  from  the  orb  web  of  the  spider Aruneus  diadematus.
                 In:  Silk Polymers: Materials  Science and Biotechnology, pp. 328-341,  D.L. Kaplan, W.W.  Adams,  B.L.
                 Farmer and C. Viney  (Eds.). American Chemical Society, Washington, DC.
                Gosline, J.,  Nichols, C., Guerette, P., Cheng, A. and Katz, S. (1995) The macromolecular design of  spiders’
                 silks. In: Biomimetics:  Design and Processing of Materials,  pp.  237-261,  M.  Sarikaya and 1.A. Aksay
                 (Eds.). American Institute of Physics, Woodbury, NY.
                Hearle,  J.W.S.,  Thwaites, J.J.  and  Amirbayat, J.  (Eds.) (1980) Mechanics  of  Flexible  Fibre  Assemblies.
                 Sijthoff and Noordhoff, Alphen aan de Rijn.
                Hudson, S.P. (I 997) The spinning of silk-like proteins into fibers. In: Protein-Based Materials, pp. 3 13-337,
                 K. McGrath and D. Kaplan (Eds.). Birkhauser, Boston, MA.
                Hyams, J.S. and Lloyd, C.W.  (Eds.) (1994) Microtubules. Wiley-Liss, New  York, NY.
                Hyman, L.H.  ( 1955) The Invertebrates,  Volume IV (Echinodemafa). McGraw-Hill,  New  York, NY.
                Kabsch, W.  and Vandekerckhove, J.  (1992) Structure and  Function  of Actin. Annu.  Rev.  Biophys. Biomol.
                 Sfrucr., 2 1 : 49-76.
                Kaplan,  D.L.,  Mello,  C.M.,  Arcidiacono,  S.,  Fossey,  S.,  Senecal,  K.  and  Muller,  W.  (1997)  Silk.  In:
                 Protein-Based Materials, pp. 103-131,  K. McGrath and D. Kaplan (Eds.). Birkhluser, Boston, MA.
                Kelly, A. and Macmillan, N.H.  (1986) Strong Solids (3d ed.). Oxford University Press, Oxford.
                Lambert, P.  (1997) Sea  CKCUmberS of British  Columbia, Southeast Alaska and  Puget  Sound. UBC  Press,
                 Vancouver, BC.
                Linton,  J.D.,  Ash,  S.G.  and  Huybrechts, L.  (1991)  Microbial polysaccharides. In:  Biomaterials:  NoveL
                 Materialsfmm Biological  Sources, pp. 215-261,  D. Byrom (Ed.). Stockton Press, New York, NY.
                Lodish, H.,  Baltimore, D.,  Berk, A.,  Zipursky,  S.L.,  Malsudaird, P. and Damell, J.  (1995) Molecular  Cell
                 Biology. W.H.  Freeman and Company, New York, NY.
                Luo, Z.-P.  and An, K.-N. (1998) Development and validation of a nanometer manipulation and measurement
                 system for biomechanical testing of single macro-molecules. J. Biomech., 3 1 : 1075-1079.
                Nishimura,  H. and  Sorko,  A.  (1987)  Mercerization of  cellulose,  IV.  Mechanism  of  mercerization  and
                 crystallite sizes. J. Appl. Polym. Sci., 33: 867-874.
                Oster, G.,  Perelson, A.S.  and  Tilney,  L.G.  (1982)  A  mechanical model  for elongation of  the acrosomal
                 process in thyone sperm. J. Math. Biol.,  15(2): 259-265.
                Pearse, V., Pearse, J., Buchsbaum, M. and Buchsbaum, R. (1987) Living Invertebrates. Blackwell, Oxford.
                Pirez-Rigueiro, .I., Viney, C.,  Llorca, J.  and Elices, M.  (1998) Silkworm silk as an engineering material. J.
                 Appl. Polym. Sci., 70( 12): 2439-2447.
                Ptrez-Rigueiro, J., Viney, C., Llorca, J. and Elices, M. (2000) Mechanical properties of single-brin silkworm
                 silk. J. Appl. Polym. Sri., 75:  1270-1277.
                P6ez-Rigueiro,  J.,  Elices, M., Llorca, J. and Viney, C. (2001) Tensile properties of Aeiope trifasciata drag
                 line silk obtained from the spider’s web. J. Appl. Polym. Sci., 82 2245-2251.
                Pollack, G.H.  (1990) Muscles and Molecules. Ebner and Sons, Seattle, WA.
                Pollack, G.H.  (2001) Cells, Gels and the Engines oflife. Ebner and Sons, Seattle, WA.
                Poza. P.,  Pkrez-Rigueiro, J., Elices, M.  and Llorca, J. (2002) Fractographic analysis of  silkworm and spider
                 silk. Engineering Fracture Mechanics, 69: 1035-1048.
   339   340   341   342   343   344   345   346   347   348   349