Page 345 - Fiber Fracture
P. 345

FRACTURE OF NATURAL POLYMERIC FIBRES                                327

             Putthanarat,  S.,  Stribeck,  N.,  Fossey,  S.A.,  Eby,  R.K.  and  Adams,  W.W.  (2000)  Investigation  of  the
              nanofibrils of silk fibers. Polymer, 41(21): 7735-7747.
             Rawn, J.D. ( 1989) Proteins. Eneqy, and Metabolism. Neil Patterson Publishers, Burlington, NC.
             Renuart, E.  and  Viney,  C.  (2000) Biological  fibrous materials:  self-assembled structures and  optimised
              properties. In: Structural  Biological Materials, pp. 221 -267,  M. Elices, (Ed.). Pergamon/Elsevier Science,
              Oxford.
             Robson,  R.M.  (1999)  Microvoids  in  Bombyx  mori  silk.  An  electron  microscopy  study.  In/.  J.  Bid.
              Macromol., 24: 145-150.
             Simon, G. and Bunsell, A.R. (1984) Mechanical and structural characterization of the nicalon silicon-carbide
              fiber. J. Mater: Sci., 19: 3649-3657.
             Steinberg, I.Z., Oplatka, A.  and Katchalsky, A. (1966) Mechanochemical engines. Narure, 21 0  568-57 I.
             Steinbuchel, A.  (1991 )  Polyhydroxyalkanoic acids.  In:  Biomaterials:  Novel  Materials  from  Biological
              Sources. pp.  123-2 13, D. Byrom (Ed.). Stockton Press, New York, NY.
             Steinmetz. M.O.,  Stoffler, D.,  Hoenger, A.,  Bremer, A.  and  Aebi, U. (1997) Actin: from cell  biology to
              atomic detail. J. Strucr. Biol., 119: 295-320.
             Stryer, L. (1988) Biochemisry. W.H.  Freeman and Company, New York, NY.
             Stryer, L. (1995) Biochemist?.  W.H.  Freeman and Company, New York, NY.
             Termonia. Y.  (2000) Molecular modeling of  the  stress/strain  behavior of  spider dragline. In: Srrucrurui
              Biological Maferials,  pp. 335-349,  M. Elices (Ed.). Pergamon/Elsevier Science, Oxford.
             Thiel, B.L., Guess, K.B. and Viney, C. (1997) Non-periodic lattice crystals in the hierarchical microstructure
              of spider (major ampullate) silk. Biopolymers, 4 I : 703-7  19.
             Tilney, L.C.  and  Inou6,  S.  (1982) Acrosomal  reaction  of  thyone  sperm,  11.  The  kinetics  and  possible
              mechanism of acrosomal process elongation.  J. Cell Bid., 93: 820-827.
             Tirrell, J.G.,  Tirrell, D.A.,  Fournier, M.J.  and  Mason,  T.L.  (1997)  Artificial proteins:  De  novo  design,
              synthesis and solid state properties. In: Protein-Based Materiuls, pp. 61-99,  K. McGrath and D.  Kaplan
              (Eds.). Birkhauser, Boston. MA.
             Trotter, J.A.  and  Koob,  T.J.  (1989) Collagen and  proteoglycan  in  a  sea  urchin  ligament  with  mutable
              mechanical properties. Cell lissue Res., 258: 527-539.
             Trotter, J.A.,  Thurmond, F.A.  and  Koob,  T.J.  (1994)  Molecular structure and  functional morphology of
              echinoderm collagen fibrils. Cell Tissue Res., 275(3): 45 1-458.
             Trotter, J.A.,  Chapman, J.A.,  Kadler, K.E. and Holmes, D.F. (1998) Growth of sea cucumber collagen fibrils
              occurs at the tips and centers in a coordinated manner. J. Mol. Bid, 284 1417-1424.
             Trotter, J.A..  Kadler, K.E. and Holmes, D.F. (2000a) Echinoderm collagen fibrils grow by surface-nucleation-
              and-propagation from both centers and ends. J. Mol. Bid, 300: 531-540.
             Trotter, J.A. et 81.  (2000b) Towards a fibrous composite with dynamically controlled stiffness: lessons from
              echinoderms. Biochrm. Sor. Trans., 28(4): 357-362.
             Tsuda, Y.,  Yasutake.  H.,  Ishijima, A.  and  Yanagida, T.  (1996) Torsional rigidity of  single actin filaments
              and actin-actin  bond breaking force under torsion measured directly by  in vitro micromanipulation. Proc.
              Natl. Acud. Sci.,  USA, 93:  12937-12942.
             Tuszynski, J.A.. Trpisova, B., Sept, D. and Brown, J.A. (1997) Selected physical issues in the structure and
              function of microtubules. J. Srruct. Bid., 118: 94-106.
             Urry,  D.W.  (1992) Free  energy transduction in  polypeptides and  proteins  based  on  inverse temperature
              transitions. Pw~. Biophys. Mol. Bid., 57( I):  23-57.
             Viney,  C.  (2000)  Silk  fibres:  origins,  nature  and  consequences of  structure. In:  Srrucrural  Biologicul
              Marerials, pp. 293-333,  M. Elices (Ed.). Pergamon/Elsevier Science, Oxford.
             Vollrath, F..  Holtet, T.,  Th~gersen, H.C.  and Frische, S. (1996) Structural organization of spider silk. Proc.
              R. Soc. hndon 8,263:  147- 151.
             Wagner. E. ( 1953) Mechanisch-technolo~i~~(~he Textilprufungen. Fr. Staats, Liidenscheid-Wuppertdl.
             Ward, 1.M. and Hadley, D.W.  (1993) An Introduction  to the Mechanical Properties of Solid Polymers. Wiley,
              Chichester.
             Warner, S.B. (1995) Fiber Science. Prentice Hall, Englewood Cliffs, NJ.
             Work, R.W. (1976) The force-elongation  behavior of web fibers and silks forcibly obtained from orb-wcb-
              spinning spiders. Texfile Res. J., 46(July): 485-492.
             Work. R.W. (1 977) Dimensions, birefringences, and force-elongation  behavior of  major and minor ampul-
   340   341   342   343   344   345   346   347   348   349   350