Page 39 - Fiber Fracture
P. 39

24                                                            K.K. Chawla

                fibers. The use of pulsed excimer radiation for FBG production lowered the Weibull
                modulus as well as the fiber fracture strength by as much as a factor of 4 compared to
                the fiber that was subjected to a CW argon-ion laser for the FBG production. The lower
                fracture strength of pulse-irradiated fiber is a result of the formation of microcracks in
                the material.


                CONCLUSIONS

                  Typically, fibers have a high surface area/volume ratio, which leads to fiber surface
                  characteristics being very important in the fracture process.
                  By far the major cause of  fracture in  fibers is the presence of  flaws either on the
                  surface of the fiber or in the interior. If the size of the flaw can be reduced through
                  processing or safe handling, the strength of the fiber will increase.
                  A stringent control of microstructural cleanliness and segregation are very important.
                  This is true for all types of fibers: glass, carbon, metal, polymers, or ceramic,
                  Fracture  surface  analysis of  fibers  can  provide  useful  information. In  particular,
                  for  noncrystalline fibers, the  following fracture parameters can be  obtained from
                  an  analysis  of  features on  the  fracture  surface morphology:  the  mirror  constant,
                   an estimation of  fracture toughness KI,, failure stress, flaw-to-mirror radius ratio,
                  fracture surface energy, and the time to failure.


                REFERENCES

                Argon, AS. (1972) In: Treutise on Materials Science and Technology, p. 79, Academic Press, New York.
                Briant, C.L. (1989) Met.  lkans., 20A: 243.
                Brownrigg, A.,  Boelen, A. and Toyama, M. (1 984) Adv. Fracr. Mech., 2: 350.
                Chandan, H.C.,  Parker, R.D. and Kalish, K.  (1994) In: Fractogruphy of  Glass, R.C. Bradt and R.E. Tressler
                  (Eds.). Plenum Press, New York, NY,  p.  143.
                Chawla, K.K.  (1 998) Fibrvus Materiuls. Cambridge University Press, Cambridge, p.  206.
                Chawla, K.K.,  Xu, Z.R., Ha, J.-S.,  Schmucker, M. and Schneider, H. (1997) Appl. Compos. Marer:, 4: 263.
                Deurbergue, A. and Oberlin, A.  (1991) Carbon, 29: 621.
                Gupta, P.K.  (1994) In:  Fractogruphy of Glass, p.  185, R.C.  Bradt and R.E. Tressler (Eds.). Plenum  Press,
                  New  York, NY.
                Horascek, 0. (1989) The Metallurgy of DopedlNon-Sug Tungsten. Elsevier, London, p. 251.
                Huttinger, K.J.  (1990) Adv. Mutec, 2: 349.
                Jain, M.K.  and Abhiraman, AS. (1987) J. Mater: Sci., 22: 278.
                Jenkins,  S.,  Jacob,  K.I.  and  Kumar,  S. (2001)  In:  Heieruphusse  Polymer  Network  Mureriuls:  Synthesis,
                  Characterimtion and Properties, p.  183, B.A.  Rozenberg and G.M. Sigalov (Eds.). Gordon and Breach,
                  New York.
                Johnson,  D.J.  (1987)  In:  Chemistry und  Physics  of  Carbon, Vol.  20,  p.  1,  P.A.  Thrower  (Ed.).  Marcel
                  Dekker, New York.
                Johnson, D.J.  (1990) In: Carbon Fibers and Filaments, p.  119, Kluwer, Boston, MA.
                Kozey, V.V.  and Kumar, S. (1994) J. Marer: Res., 9: 2717.
                Kumar, S. (1989) SAMPE Q., 20 3.
                Mecholsky, J.J.  (1994) In: Fractography of Glass, p.  37, R.C.  Bradt and R.E.  Tressler (Eds.). Plenum Press,
                  New York.
                Mecholsky, J.J.,  Freirnan, S.W. and Morey, S.M. (1977) Bull. Am. Cerum. Soc., 56 1016.
   34   35   36   37   38   39   40   41   42   43   44