Page 42 - Fiber Fracture
P. 42

Fiber Fracture
              M. Elices and J. LIorca (Editors)
              0 2002 Elsevier Science Ltd. All rights reserved




                        MODELS OF FIBRE FRACTURE



                                      M. Elices and J. Llorca


                   Departamento Ciencia de Materiales. Universidad Polithzica de Madrid, E. T.S.I.  Caminos,
                                 c/ Profesor Aranguren sln, 28040 Madrid, Spain





             Introduction  .....................................                   29
             Atomistic Approach .................................                  29
                 Strong Bonds in One Dimension: Polymer Fibres  ...............    31
                 Strong Bonds in Two Dimensions: Carbon Nanotubes  ............  33
                 Strong Bonds in Three Dimensions: Diamond Whiskers  ...........  35
             Continuum Approach  ................................                  37
                 Homogeneous Fibres ..............................                 37
                      Brittle Behaviour .............................              37
                      Ductile Behaviour  ............................              39
                 Highly Oriented Polymer Fibres  ........................          42
                 Heterogeneous Fibres  .............................               46
                      Composite Fibres .............................               46
                      Hierarchical Fibres ............................             5 1
             Acknowledgements  .................................                   54
             References..  ....................................                    54






             Abstract

                Fibre  fracture  is  modelled  using  either  an  atomistic  approach  or  a  continuum
             approach.  In  the  first case,  three  different levels  were  considered; one-dimensional
             models applied to  polymer fibres, two-dimensional models for  nanotube fibres, and
             three-dimensional models for  whiskers. Tensile stresses in commercial fibres are, in
             general, one order of  magnitude below theoretical estimates. This discrepancy is due to
             the presence of  defects, and realistic atomistic modelling should take account of  these
             imperfections. Modelling fibre fracture from a continuum point of view deals first with
             homogeneous fibres and next with the more involved subject of heterogeneous fibres,
             stressing the relevance of interfaces, where neither strong nor very weak interfaces give
             optimum fracture results. Quantitative predictions are  mostly based on  linear elastic
   37   38   39   40   41   42   43   44   45   46   47