Page 130 - Finite Element Analysis with ANSYS Workbench
P. 130

7.1 Basic Equations                                       121



                                            2D Plate
                                               2  w     Eh 3     4  w    4  w     4  w 
                                           h                        2           
                                                          
                                              t   2  12(1  2  )   x 4    x y    2  2  y   4  
                                 The  deflection  w   w (, , ) varies  with  the  coordinates  x,  y  and
                                                        y
                                                      x
                                                          t
                                 time  ,t     is the material density,  h is the plate thickness,  E  is the
                                 material Young’s modulus and   is the Poisson’s ratio.
                                            3D Solid
                                                 2 u                  
                                                          x       xy        xz
                                                 t   2    x      y      z 
                                                 2 v        xy      y      yz
                                                                      
                                                 t   2    x      y      z 
                                                 2 w              yz   
                                                              
                                                                       
                                                         xz               z
                                                 t   2    x      y      z 
                                 The  displacement  components u   u (, , , ), v   v (, , , ), w 
                                                                                    y
                                                                                  x
                                                                                        t
                                                                                      z
                                                                          t
                                                                    x
                                                                      y
                                                                        z
                                   (, , , )  vary  with  the  coordinates  ,x y z  and  time  t .  The
                                 wx   y  z  t                             ,
                                 quantities     are  the  normal  stress  components  while  xy ,
                                             ,
                                                 ,
                                                   z
                                            x
                                                y
                                  xz ,   are the shearing stress components.
                                      yz

                                     7.1.2  Related Equations
                                            After the  displacement unknowns are solved  from the
                                 above  differential  equations,  the  stresses  can  be  determined  by
                                 using the related equations as follows.
                                            1D Truss
                                            The  stress     is  determined  from  the  computed  dis-
                                 placement u as,
                                                                    u
                                                               E
                                                                    x 
                                            1D Beam
                                            The  stress     of  the  beam  is  determined  at  any  z
                                 coordinate from the computed deflection  w as,
   125   126   127   128   129   130   131   132   133   134   135