Page 178 - Finite Element Analysis with ANSYS Workbench
P. 178

9.2 Finite Element Method                                 169




                                               cAL  2   1                     1kA    
                                                                                       1
                                                                       
                                       C
                                                  1 6  2            ;       K       1 L    1   
                                                                      c
                                            QAL  1           qpL   1          hT pL   1 
                                                ;       s      ;           
                                                                           Q
                                    Q
                                                       Q
                                     Q
                                             2   1    q        2   1    h        2    1 
                                 These closed-form matrices and vectors can be used to develop a
                                 finite element computer program directly.
                                             The three-node triangular element is a simple element
                                 type for learning the finite element method in two dimensions.  The
                                 element consists of a node at each corner as shown in the figure.
                                 The  finite  element  matrices  and  load  vectors  can  be  derived  in
                                 closed form.  Examples of these matrices and load vectors are,
                                                                   (     ) hT T
                                                      q s       3            (  4  T  4  )T 

                                                  Q
                                                                             2
                                            y
                                                                   t
                                              x   1

                                                    2   1  1                     1  
                                               cAt                         QAt  
                                      C
                                                                     Q
                                                 1   2   1       ;           1  
                                               12                    Q       3   
                                                                                   1
                                                    1    1  2                 
                                                  2   1  1                        1  
                                       K     hA   1  2  1             ;         hT A  
                                                                                
                                                                      Q
                                                                                    1  
                                       h
                                              12                     h        3   
                                                  1   1  2                     
                                                                                    1
                                                    b b  cc    b b   1 2  cc  b b   1 3  cc
                                                                                    1 3 
                                                                       1 2
                                                           11
                                                      11
                                          K    kt   b b   c c  bb   c c  bb   c c  
                                          c
                                                4A   1 2  1 2   22    22     2 3   2 3 
                                                                                    3 3 
                                                     bb   13  c c  b b   2 3  c c  b b   3 3  c c 
                                                           13
                                                                       2 3
                                 where  b ,  c ;  i =1,  2,  3  are  the  coefficients  that  depend  on  the
                                         i
                                             i
                                 nodal  coordinates  x ,  y   and A is  the  element  area.    Details  for
                                                        i
                                                    i
                                 determining these coefficients and area are given in chapter 4.
   173   174   175   176   177   178   179   180   181   182   183