Page 176 - Flexible Robotics in Medicine
P. 176

162 Chapter 6

            In order for tip-based control to be implemented, equations must be found to relate the
                  0 1                0    1
                    x                  L 1
            inputs  @ A  to the outputs  @  t  A .
                    y
                     z                  θ

            Substituting (6.4) into (6.2),

                                             x 1 y 5 R 2 Rcosφ
                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                   2
                                              2

                                                       1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                               21
                                                            2
                                        φ 5 cos    1 2     x 1 y 2                        (6.6)
                                                       R
            Substituting (6.6) into (6.3),

                                                           1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                                                                2
                                   z 5 L 1 1 Rsin cos 21  1 2  x 1 y 2                    (6.7)
                                                           R

            From trigonometric identities, this simplifies to

                                               s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                     2
                                                          1  p ffiffiffiffiffiffiffiffiffiffiffiffiffi

                                                              2
                                     L 1 5 z 2 R  1 2 12     x 1y 2
                                                         R
            Similarly, substituting (6.6) into (6.1)
                                                       1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                            2
                                        t 5 Rcos 21  1 2   x 1 y 2                        (6.8)
                                                       R



            However, as cos 21  is a many-to-one mapping, it may result in errors when implemented
            programmatically. A better alternative is to use the arctan2(y, x) function.

            From (6.8),

                                       t        1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                                                          2
                                                     2
                                   cos    5 1 2     x 1 y ; let RHS 5 A
                                       R        R
                                                t        ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                       p
                                            sin    56    1 2 A 2
                                                R
                                                        t      t

                                               21
                                        t 5 Rtan 2 sin    ; cos                           (6.9)
                                                       R       R
   171   172   173   174   175   176   177   178   179   180   181