Page 181 - Flexible Robotics in Medicine
P. 181
Handheld flexible robot with concentric tubes aiming for intraocular procedures 167
[2] J. Burgner, et al., An autoclavable steerable cannula manual deployment device: design and accuracy
analysis, J. Med. Devices 6 (4) (2012) 041007.
[3] R.A. Lathrop, D.C. Rucker, R.J. Webster, Guidance of a steerable cannula robot in soft tissue using
preoperative imaging and conoscopic surface contour sensing, in: 2010 IEEE International Conference on
Robotics and Automation (ICRA), 2010.
[4] S. Rizzo, et al., 25-gauge, sutureless vitrectomy and standard 20-gauge pars plana vitrectomy in idiopathic
epiretinal membrane surgery: a comparative pilot study, Graefes Arch. Clin. Exp. Ophthalmol. 244 (4)
(2006) 472 479.
[5] M. Ohji, Y. Tano, A stiffer and safer light pipe for 25-gauge vitrectomy, Arch. Ophthalmol. 125 (10)
(2007) 1415 1416.
[6] T.H. Williamson, Vitreoretinal Surgery, second ed, Springer, 2013.
[7] P.J. Kertes, G.A. Peyman, A light pipe with a twist, Arch. Ophthalmol. 114 (6) (1996) 777 778.
[8] M.Y.O. Hirokazu Sakaguchi, Considering the illumination choices in vitreoretinal surgery, Retin.
Physician 9 (2012) 26 31.
[9] Synergetics USA, Inc., Illuminated Directionalt II. Available from: ,http://www.synergeticsusa.com/
index.php/products/featured/directional-2-laser-probe#illuminated-directional-ii..
[10] K. Surgical, Laser probes retina surgical (posterior). Available from: ,http://www.katalystsurgical.
com/instruments-posterior/laser-probes..
[11] C.A. McCannel, Optimal illumination key to safe, effective surgery, Retin. Today (2013) 3.
[12] A. Uneri, et al., New steady-hand eye robot with micro-force sensing for vitreoretinal surgery, in: 2010
3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob), IEEE, 2010.
[13] G. Hubens, et al., A performance study comparing manual and robotically assisted laparoscopic surgery
using the da Vinci system, Surg. Endosc. 17 (10) (2003) 1595 1599.
[14] H. Jean-Pierre, Robotic eye surgery: past, present, and future, J. Comput. Sci. Syst. Biol. (2012).
[15] P.S. Jensen, et al., Toward robot-assisted vascular microsurgery in the retina, Graefes Arch. Clin. Exp.
Ophthalmol. 235 (11) (1997) 696 701.
[16] D.H. Bourla, et al., Feasibility study of intraocular robotic surgery with the da Vinci surgical system,
Retina 28 (1) (2008) 154 158.
[17] A. Tsirbas, C. Mango, E. Dutson, Robotic ocular surgery, Br. J. Ophthalmol. 91 (1) (2007) 18 21.
[18] J.-L. Bourges, et al., Assessment of a hexapod surgical system for robotic micro-macro manipulations in
ocular surgery, Ophthalmic Res. 46 (1) (2011) 25 30.
[19] J. Hubschman, et al., ‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery, Eye 24
(2) (2010) 364 367.
[20] E. Rahimy, et al., Robot-assisted intraocular surgery: development of the IRISS and feasibility studies in
an animal model, Eye 27 (8) (2013) 972 978.
[21] W. Ji, et al., Reconfigurable fiducial-integrated modular needle driver for MRI-guided percutaneous
interventions, J. Med. Devices 7 (3) (2013) 030915.
[22] P.J. Swaney, et al., Minimally-invasive intracerebral hemorrhage removal using an active cannula, in:
2013 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2013.
[23] L. Wu, B.L.W. Tan, H. Ren, Prototype development of a hand-held robotic light pipe for intraocular
procedures, in: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2015,
pp. 368 373.
[24] P. Dupont, et al., Concentric tube robots for minimally invasive surgery, in: Hamlyn Symposium on
Medical Robotics, 2012.
[25] J.N.L. Sancho-Bru, et al., Optimum tool handle diameter for a cylinder grip, J. Hand Ther. 16 (4) (2003)
337 342.
[26] M. Eksioglu, Relative optimum grip span as a function of hand anthropometry, Int. J. Ind. Ergonom. 34
(1) (2004) 1 12.