Page 207 - Flexible Robotics in Medicine
P. 207
194 Chapter 7
[5] M. Mack, Minimally invasive and robotic surgery, JAMA 285 (5) (2001) 568.
[6] J. Romanelli, D. Earle, Single-port laparoscopic surgery: an overview, Surg. Endosc. 23 (7) (2009)
1419 1427.
[7] H. Jaffe, Giant cell tumor of bone: its pathologic appearance, grading, supposed variants and treatment,
2017, CiNii Articles.
[8] Y. Xu, Q. Li, P. Su, T. Shen, Y. Zhu, MDCT and MRI for the diagnosis of complex fractures of the tibial
plateau: a case-control study, Exp. Ther. Med. 7 (1) (2013) 199 203.
[9] A. Jiang, G. Xynogalas, P. Dasgupta, K. Althoefer, T. Nanayakkara, Design of a variable stiffness flexible
manipulator with composite granular jamming and membrane coupling, in: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012. ,https://doi.org/10.1109/IROS.2012.6385696..
[10] A. Ataollahi, R. Karim, A.S. Fallah, K. Rhode, R. Razavi, L.D. Seneviratne, et al., Three-degree-of-
freedom MR-compatible multisegment cardiac catheter steering mechanism, IEEE Trans. Biomed. Eng.
63 (11) (2016) 2425 2435.
[11] H. Ren, C.X. Chen, C. Cai, K. Ramachandra, S. Lalithkumar, Pilot study and design conceptualization for
a slim single-port surgical manipulator with spring backbones and catheter-size channels, in: 2017 IEEE
International Conference on Information and Automation (ICIA), 2017, pp. 499 504.
[12] L. Lanc, A. Delchambre, P. Lambert, Flexible medical devices: review of controllable stiffness solutions,
Actuators 6 (3) (2017) 23. Available from: https://doi.org/10.3390/act6030023.
[13] Y. Kim, S. Cheng, S. Kim, K. Iagnemma, A novel layer jamming mechanism with tunable stiffness
capability for minimally invasive surgery, IEEE Trans. Robot. 29 (4) (2013) 1031 1042. Available from:
https://doi.org/10.1109/TRO.2013.2256313.
[14] Y. Kim, S. Cheng, S. Kim, K. Iagnemma, A stiffness-adjustable hyper-redundant manipulator using a
variable neutral-line mechanism for minimally invasive surgery, IEEE Trans. Robot. 30 (2) (2014)
382 395. Available from: https://doi.org/10.1109/TRO.2013.2287975.
[15] Jiang, A., Ranzani, T., Gerboni, G., Lekstutyte, L., Althoefer, K., Dasgupta, P., et al., Granular jamming:
does the membrane matter? Soft Robot. 1 (3) (2014).
[16] V. Wall, R. Deimel, O. Brock, Selective stiffening of soft actuators based on jamming, in: 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015. ,https://doi.org/10.1109/ICRA.
2015.7139008..
[17] M. Manti, V. Cacucciolo, M. Cianchetti, Stiffening in soft robotics: a review of state of the art, IEEE
Robot. Autom. Mag. 23 (3) (2016) 93 106. Available from: https://doi.org/10.1109/MRA.2016.2582718.
[18] N.G. Cheng, A. Gopinath, L. Wang, K. Iagnemma, A.E. Hosoi, Thermally tunable, self-healing
composites for soft robotic applications: thermally tunable, self-healing composites, Macromol. Mater.
Eng. 299 (11) (2014) 1279 1284. Available from: https://doi.org/10.1002/mame.201400017.
[19] N.G. Cheng, M.B. Lobovsky, S.J. Keating, A.M. Setapen, K.I. Gero, A. E. Hosoi, et al., Design and
analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media, in:
2012 IEEE International Conference on Robotics and Automation, 2012, pp. 4328 4333. ,https://doi.
org/10.1109/ICRA.2012.6225373..
[20] M. Henke, G. Gerlach, A multi-layered variable stiffness device based on smart form closure actuators, J.
Intell. Mater. Syst. Struct. 27 (3) (2016) 375 383. Available from: https://doi.org/10.1177/
1045389X15577645a.
[21] J.L. Santiago, I.D. Walker, I.S. Godage, Continuum robots for space applications based on layer-jamming
scales with stiffening capability. in: 2015 IEEE Aerospace Conference, IEEE, 2015, pp. 1 13.
[22] M.J. Telleria, M. Hansen, D. Campbell, A. Servi, M.L. Culpepper, Modeling and implementation of
solder-activated joints for single-actuator, centimeter-scale robotic mechanisms, in: 2010 IEEE
International Conference on Robotics and Automation, 2010.