Page 500 - Flexible Robotics in Medicine
P. 500
Index 495
prototype and experiment, obstacles avoidance test, Force generation and positioning
265 266 284 285 accuracy, 135 138
comparison of selected flexible practical application via Force sensing in compact
robot/manipulators, 251t cadaveric testing, 285 286 concentric tube mechanism
paired tendon-driven weight-bearing test, 283 concentric tube robot design,
manipulator, 253 256 prototype fabrication 331 333
simulation of different designs electronics module, 278 control system
using FEM, 256 259 flexible manipulator module, motor driver, 336 338
load cases, 258 259 276 277 PID tuning, 339
mesh, 259 motor unit module, 278 experiment, 342 345
problem geometry, 258 robust testing for development, force sensing tip, 339 342
Flexible drill, 209, 209f, 420 287 kinematic model, 333 336
Flexible endoscopes, 291 Flexible spring body, 187 review of CTR design, 328 329
Flexible endotracheal drill, Flexible steerable manipulator tool tissue interaction
421 429 utilizing complementary in cadaveric oral cavity
Flexible fiber-optic endoscope, configuration. See also Flexible scanning, 343f
244 245 bending manipulators in nasal cavity scanning, 344f,
Flexible fluidic actuation, 172 design verification, 87 93 345f
Flexible manipulators, 42 43 accuracy of prototype, 92 Force sensing tip, 339 342
Flexible robotic design, 328 actuation time, 88 89 Force-deflection graph, 53 54
mechanical design, 220 222 bending angle measurement, Force-deformation analysis,
parameter optimization for 88 260 262
bending achievement, 221f biopsy sample volume, 88 Forceps, 179 180, 180f, 395,
parameter value of bendable design and intended use, 401 404
joint, 220t 89 92 strength, 91
Flexible robotic platform with easy manipulation around tool, 476
multiple-bending tendon-driven corners, 90, 90f 4-DOF stainless steel, 209
mechanism. See also Flexible metrics benchmarking, 93 Functionality
bending manipulators stability measurement, 88 of force generation and
biocompatible materials, 286 stability of prototype, 91 positioning accuracy
comparison with existing strength of distal tip, 91 improvement, 138, 139f
flexible manipulator strength of forceps, 91 pulling effect on generating
platforms, 286 strength of jaw, 91 tip force, 135 136
design qualification, 272 276 total bending angle and targeting accuracy, 136 137
bending angle determination, individual bending test
272 274 segment, 92 bending capability test, 54
Denavit Hartenberg methods, 79 87, 80f,82f functionality of mechanical
transformation matrix, cylindrical segments and ball zooming segment, 54 55
275 276 bearings, 84f
pulling length and velocity of extended broader concepts,
stepper motors, 274 86 87 G
modular design approach, proximal control system, Gait selection, 24 25
270 272 85 86 snake’s concertina locomotion,
precision positioning, 286 transverse cross-section of 25
prototype analysis and hollow cylindrical segment, snake’s rectilinear locomotion,
characteristic study, 279 286 83f 24 25
flexible manipulator prototype patentability analysis, 93 97 Gastrocameras, 365 366
repeatability, 279 282 Flexible tube, 40 Gastrointestinal tract (GI tract), 79,
flexible manipulator prototype Flexible tubular manipulator, 390
workspace, 279 115 116 Gaussian process regression, 12

