Page 177 - Formation Damage during Improved Oil Recovery Fundamentals and Applications
P. 177

Formation Damage by Fines Migration: Mathematical and Laboratory Modeling, Field Cases  153


              yields:
                           p
                              ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffi p ffiffiffiffiffiffiffiffiffiffi
                         Λ   X1α X2TÞ22 X1 X2αT
                                ð
              CX;TÞ5e                             ð S aI 2S a ðT 50ÞÞ
                ð
                                         ð      p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi p
                              p ffiffiffi p ffiffiffiffiffiffiffiffiffiffi  T   Λ  αT1T 0 12αÞ2  ffiffiffiffiffiffiffiffiffiffiffiffiffi    @S cr TðÞ
                                                              ð
                       2e ½ 2Λð  X2 X2αTފ  e         ð      T 0 12αÞ      dT:
                                          0                           @T
                                                                        (3.191)
                 Note that the integral term contains the constant T 0 defined by the
              solution of Eq. (3.187):
                                  X 2 X w 2 X 0 5 α T 2 T 0 Þ;          (3.192)
                                                 ð
              where on the salinity shock X w 1 X 0 5 T 0 and so X 5 αT 1 T 0 (1-α).
                 This constant is used to eliminate X from the integral such that the
              integrand is a function of T only. For cases where the integral can be eval-
              uated explicitly, the constant can be substituted following integration.
                 For the region behind the concentration shock, the original PDE
              (Eq. (3.186)) is reduced to the ODE:
                                 dC         ΛC        1 @S a
                                            ffiffiffiffi ffiffiffiffiffiffi 2
                                    52 p p                :             (3.193)
                                 dX      2 X X w     α @T
                 Along the parametric curves given by:
                                          dT    1
                                             5   :                      (3.194)
                                          dX    α
                 Integrating  Eq.  (3.193)  subject  to  the  boundary  condition
              (Eq. (3.183)) yields:
                                   p ffiffiffi p
                                        ffiffiffiffiffi  ð X
                               e 2Λð  X2 X wÞ    p ffiffiffi p ffiffiffiffiffi  @S cr XðÞ
                   CX; TÞ 52                  e Λð  X2 X wÞ     dX:     (3.195)
                    ð
                                    α                     @T
                                            X w
                 The solution here is clearly presented in an implicit form due to the
              requirement of a continuous function S cr (U,γ ) of which there is yet no
              accepted general form. This requirement complicates generating results,
              and for particular cases of the critical retention function will lead to a
              need for numerically solving the integrals in Eqs. (3.191 and 3.195).
                 The strained concentration is solved by integrating Eq. (3.175) as an
              ordinary differential equation. The dimensionless pressure drop is then
              calculated by integrating Eq. (3.179). The results are summarized in
              Table 3.12.
   172   173   174   175   176   177   178   179   180   181   182