Page 110 - Foundations Of Differential Calculus
P. 110

5. On the Differentiation of Algebraic Functions of One Variable  93
                                       n
             If, on the other hand, y = p/q , then by the general rule,
                                      n
                                     q dp − npq n−1 dq
                                dy =                 .
                                           q 2n
             If we divide both numerator and denominator by q n−1  we have
                                        qdp − np dq
                                   dy =           .
                                           q n+1
             We conclude:
                   p
          II. If y =  , then
                   q n
                                        qdp − np dq
                                   dy =           .
                                           q n+1

                                      m
                                         n
             If the given quotient is y = p /q , then we find that
                                 mp m−1 n        m n−1 dq
                                        q dp − np q
                            dy =                         ,
                                           q 2n
             which reduces to
                                       m−1        m
                                    mp    qdp − np dq
                               dy =                   .
                                           q n+1
             It follows that:
                   p m
         III. If y =  , then
                   q n
                                     m−1
                                    p   (mq dp − np dq)
                               dy =                   .
                                           q n+1
                                                 m n
             Finally, if the given quotient is y = r/(p q ), then by the general
             quotient rule we have
                             m n
                            p q dr − mp m−1 n        m n−1 rdq
                                           q rdp − np q
                       dy =                                   .
                                             q
                                          p 2m 2n
                                                               m−1 n−1
             Since both numerator and denominator are divisible by p  q  :
                    r
         IV. If y =    , then
                    m n
                   p q
                                   pq dr − mqr dp − npr dq
                              dy =                     .
                                         p m+1 n+1
                                             q
   105   106   107   108   109   110   111   112   113   114   115