Page 108 - Foundations Of Differential Calculus
P. 108

5. On the Differentiation of Algebraic Functions of One Variable  91
                   pr
          I. If y =  , then
                   q
                                    pq dr + qr dp − pr dq
                               dy =                   .
                                            q 2
                   p
             If y =  ,welet qs = Q, so that
                   qs
                                    dQ = qds + sdq
             and

                                        Qdp − pdQ
                                   dy =           .
                                            2 2
                                           q s
        It follows that:
                    p
          II. If y =  , then
                   qs
                                    qs dp − pq ds − ps dq
                               dy =                   .
                                            2 2
                                           q s
                   pr                                          P
             If y =  , again, we let pr = P and qs = Q, so that y =  and
                   qs                                          Q
                                       QdP − PdQ
                                  dy =             .
                                            Q 2

        Since
                    dP = pdr + rdp     and    dQ = qds + sdq,

        we obtain the following differentiation:
                   pr
         III. If y =  , then
                   qs
                               pqs dr + qrs dp − pqr ds − prs dq
                          dy =                             ,
                                            2 2
                                           q s
             or
                                 rdp   pdr    pr dq  pr ds
                            dy =     +     −       −     .
                                               2
                                  qs    qs    q s     qs 2
        In a similar way, if the numerator and denominator of the quotient con-
        tained several factors, using the same reasoning we could investigate the
        differential. It does not seem to be necessary that one be led by hand
        through the argument. For this reason we omit any examples of this kind,
   103   104   105   106   107   108   109   110   111   112   113