Page 103 - Foundations Of Differential Calculus
P. 103

86    5. On the Differentiation of Algebraic Functions of One Variable
             If we take a common denominator, we have

                                                     2
                                    2
                                          2
                             2
                          −x dx − a dx + x dx      −a dx
                                 √            =    √       .
                                    2
                                                     2
                               x 2  a − x 2     x 2  a − x 2
             Hence the desired differential is
                                             2
                                          −a dx
                                   dy =   √       .
                                             2
                                        x 2  a − x 2
                      x 2
         III. If y = √     ,welet
                     4
                    a + x 4
                             2                   1
                            x = p     and    √        = q.
                                                4
                                               a + x 4
             We find that
                                                       3
                                                    −2x dx
                        dp =2xdx      and    dq =         3/2  ,
                                                        4
                                                    4
                                                  (a + x )
             so that
                                    5                      4
                                 −2x dx       2xdx       2a xdx
                   pdq + qdp =         3/2  + √      =         3/2  .
                                               4
                                                         4
                                     4
                                                              4
                                 4
                               (a + x )       a + x 4  (a + x )
             It follows that the desired differential is
                                            4
                                          2a xdx
                                dy =         √       .
                                           4
                                      4
                                                4
                                     (a + x ) a + x 4
                       x
         IV. If y =   √       ,welet
                   x +  1+ x 2
                                                1
                           x = p    and        √       = q.
                                           x +   1+ x 2
             Since
                                       dp = dx
             and
                                 
√                    √
                     −dx − (xdx)    1+ x 2    −dx x +    1+ x 2
                dq =         √        2          √        2 √
                                   2      =            2        2
                         x +   1+ x          x +  1+ x      1+ x
                             −dx
                          √        √     ,
                   =            2       2
                      x +  1+ x     1+ x
   98   99   100   101   102   103   104   105   106   107   108