Page 104 - Foundations Of Differential Calculus
P. 104

5. On the Differentiation of Algebraic Functions of One Variable  87
             we have
                                     −xdx                dx
                                  √         √      +    √
                  pdq + qdp =            2       2             2
                               x +  1+ x    1+ x     x +  1+ x
                                    √
                                          2
                                dx    1+ x − x
                                  √         √     .
                            =            2       2
                               x +  1+ x    1+ x
             Therefore, the desired differential is
                                         √
                                               2
                                     dx   1+ x − x
                                       √        √      .
                              dy =            2       2
                                    x +  1+ x    1+ x
             If we multiply both numerator and denominator of this fraction by
             √
                   2
              1+ x − x,wehave
                                      √
                                 2          2           2
                        dx 1+2x − 2x 1+ x        dx +2x dx
                   dy =        √               =   √        − 2x dx.
                                 1+ x 2             1+ x 2
             The same differential can be more easily obtained. Since
                                            x
                                   y =     √      ,
                                       x +  1+ x 2
                                                          √
                                                                 2
             if we multiply both numerator and denominator by  1+ x − x,we
             have
                                                 2
                                      2
                                                     4
                                          2               2
                          y = x  1+ x − x =     x + x − x .
             By the previous rule we have
                                  3
                                                      2
                          xdx +2x dx           dx +2x dx
                     dy =  √          − 2xdx =  √         − 2x dx.
                              2
                             x + x 4              1+ x 2
          V. If y =(a + x)(b − x)(x − c), then
               dy =(a + x)(b − x) dx − (a + x)(x − c) dx +(b − x)(x − c) dx.





                               2
                                    2
                       2  2   √
         VI. If y = x a + x   a − x , because of the three factors we have
                                                           2
                                                                2

                                                          x dx a + x 2
                                  2
                                                  2
                                      2
                                                      2
                         2   2              2
               dy = dx a + x     a − x +2x dx    a − x −    √
                                                               2
                                                              a − x 2
                         4   2 2    4
                    dx a + a x − 4x
                  =      √            .
                            2
                           a − x 2
   99   100   101   102   103   104   105   106   107   108   109