Page 99 - Foundations Of Differential Calculus
P. 99

82    5. On the Differentiation of Algebraic Functions of One Variable
                             2    3
        Likewise, if a + bx + cx + ex = y is a third-degree polynomial, then
                                                  2
                             dy = bdx +2cx dx +3ex dx
                             2        2        2
                            d y =2cdx +6ex dx ,
                             3        3
                            d y =6edx ,
                             4
                            d y =0.
        In general, if the function is of degree n, then its differential of order n will
        be constant, and higher-order differentials will all vanish.

        161. Nor is there any difficulty with differentiation if among the powers of
        x that make up a function we have negative or fractional exponents. Thus

          I. If
                                           √     c
                                   y = a + b x −  ,
                                                 x
             then
                                        bdx    cdx
                                   dy = √ +       .
                                        2 x    x 2

          II. If
                                     a        √
                                y = √ + b + c x − ex,
                                      x
             then
                                    −adx     cdx
                               dy =    √ + √ − edx
                                    2x x    2 x
             and

                                  2    3adx 2   cdx 2
                                 d y =   √ −     √ .
                                      4x 2  x  4x x
         III. If
                                        b      c    f
                               y = a + √   − √ +      ,
                                       3  2    3     2
                                        x    x x    x
             then
                                  −2bdx     4cdx    2fdx
                             dy =   √    +   2 3      3
                                              √ −
                                     3
                                  3x x 2   3x   x    x
             and
                                       2        2        2
                            2    10bdx     28cdx    6fdx
                                              √ +
                           d y =    √    −   3 3       4  .
                                     3
                                 9x 2  x 2  9x  x     x
   94   95   96   97   98   99   100   101   102   103   104