Page 191 - Foundations Of Differential Calculus
P. 191

174    9. On Differential Equations
        and by differentiation,
                          xdy ln x + ydx − ydx ln x  dy
                                     x 2          =  y  .
        We conclude that
                                       2     2
                                      x dy − y dx
                               ln x =            .
                                              2
                                      yx dy − y dx
        When this equation is differentiated, with dx set constant, we have
                          2 2
                   dx   x d y +2xdxdy − 2ydx dy
                      =
                                       2
                    x          yx dy − y dx
                             2     2       2       2
                           y dx − x dy  yx d y + xdy − ydx dy
                        +                         2           ,
                                              2
                                     (yx dy − y dx)
        or
                                   2 2
                        3
                              2
                                                 2
                                         2
                 dx    y xdxd y − y x dx d y +3yx dx dy 2
                    =                        2
                                         2
                  x             (yx dy − y dx)
                                                  2
                           2
                                      3
                                  2
                                         2
                                                            3
                                                     2
                        −y xdxdy + y dx dy − 2xy dx dy − x dy  3
                      +                           2             ,
                                              2
                                     (yx dy − y dx)
        which by reduction gives
                   3     2    2 2    2      2     2     2     2
                  y xdxd y − y x dx d y +3yx dx dy − 2xy dx dy
                                                       4
                          3  2        2  2      3  3  y dx 3
                      +3y dx dy − 2xy dx dy − x dy −        =0,
                                                        x
        or
           2 2           2               2    2        2 2
          y x (y − x) dx d y +3yx dx dy x dy + y dx − 2y x dx dy (dx + dy)
                  4  3   4   3
               = x dy + y dx .
        294. Exponential quantities are removed by differentiation in the same
        way as logarithms. If the given equation is
                                          Q
                                     P = e ,
        where P and Q are any functions of x and y, the equation can be trans-
        formed into the logarithmic equation ln P = Q, whose differential is
                           dP
                              = Q,     or   dP = P dQ.
                           P
        There is no real difficulty if the exponential quantities are more compli-
        cated. In this case, if one differentiation is not sufficient, then two or more
        differentiations will solve the problem.
   186   187   188   189   190   191   192   193   194   195   196