Page 192 - Foundations Of Differential Calculus
P. 192

9. On Differential Equations  175
          I. Let
                                         x
                                         e + e −x
                                     y =        .
                                         e − e −x
                                         x
                                                                x
             When both numerator and denominator are multiplied by e ,wehave
                                         e 2x  +1
                                     y =        ,
                                         e 2x  − 1
             so that
                              y +1                     y +1
                         2x
                        e  =           and    2x =ln         ,
                              y − 1                   y − 1
             whose differential is
                                        dy       dy
                                dx = −       =       .
                                        2
                                       y − 1   1 − y 2
          II. Let
                                           x   −x
                                         e + e
                                  y =ln            .
                                             2
             By the first differentiation
                                         x
                                        e − e −x
                                   dy =         dx,
                                         x
                                        e + e −x
             or
                         dy   e 2x  − 1          2x  dy + dx
                            =            and    e  =        .
                         dx   e 2x  +1               dx − dy
             Hence

                                          dy + dx
                                  2x =ln           .
                                          dx − dy
             If we take dx to be constant, then
                                              2
                                          dx d y
                                    dx =         ,
                                           2
                                         dx − dy 2
             or
                                      2   2      2
                                   dx = d y + dy .

        295. In a similar way trigonometric quantities can be removed from an
        equation by differentiation, as can be understood from the following exam-
        ples.
          I. Let
                                               x
                                    y = a arcsin .
                                               a
             Then
                                           adx
                                    dy = √       .
                                            2
                                          a − x 2
   187   188   189   190   191   192   193   194   195   196   197