Page 110 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 110

1656_C02.fm  Page 90  Thursday, April 14, 2005  6:28 PM





                       90                                    Fracture Mechanics: Fundamentals and Applications


                         Equilibrium equations:

                                                        ∂σ xx  +  ∂τ xy
                                                         ∂x    ∂y  = 0                          (A2.4a)

                                                        ∂ σ  yy  ∂ τ  xy
                                                         ∂y  +  ∂x  = 0                         (A2.4b)
                         Compatibility equation:

                                                       ∇  2  xx + (σ  yy ) = σ  0                (A2.5)

                         where
                                                             ∂ 2  ∂ 2
                                                        ∇=      +
                                                          2
                                                             ∂x  2  ∂y  2
                          Airy stress function: For a two-dimensional continuous elastic medium, there exists a function
                       Φ(x, y) from which the stresses can be derived:
                                                               ∂ Φ
                                                                2
                                                          σ =   y ∂  2                          (A2.6a)
                                                            xx
                                                               ∂ Φ
                                                                2
                                                          σ =   x ∂  2                          (A2.6b)
                                                            yy
                                                               ∂ Φ
                                                                2
                                                         τ =−  ∂∂                               (A2.6c)
                                                                xy
                                                          xy
                       where Φ is the Airy stress function. The equilibrium and compatibility equations are automatically
                       satisfied if Φ has the following property:

                                                    ∂ Φ  4  ∂ Φ  4  + ∂ Φ  4
                                                    ∂x  4  + 2 ∂∂y  x  2  2  ∂y  4  = 0

                       or

                                                          ∇∇ Φ  = 0                              (A2.7)
                                                           2
                                                             2
                       A2.1.2  Polar Coordinates
                       Strain-displacement relationships:

                                                         u ∂
                                                    ε =  r ∂  r                                 (A2.8a)
                                                     rr
                                                        u   1  ∂u θ
                                                   ε θθ =  r  r  +  r  ∂ θ                      (A2.8b)


                                                    ε =  1   1  u ∂  r  +  u ∂  θ  − u       (A2.8c)
                                                                       θ
                                                          
                                                     θ r
                                                        2  r ∂ θ  r ∂  r 
                         where u r and u θ  are the radial and tangential displacement components, respectively.
   105   106   107   108   109   110   111   112   113   114   115