Page 109 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 109

1656_C02.fm  Page 89  Thursday, April 14, 2005  6:28 PM





                       Linear Elastic Fracture Mechanics                                            89


                          The governing equations of plane elasticity are given below for rectangular Cartesian coordi-
                       nates. Section A2.1.2 lists the same relationships in terms of polar coordinates.
                       A2.1.1  Cartesian Coordinates

                       Strain-displacement relationships:

                                                u ∂         u ∂       1   u ∂  u ∂ 
                                                                                y
                                           ε  xx  x ∂  x  ε =  yy  ∂ y y  ε =  xy  =  2    y ∂  x  +  x ∂    (A2.1)

                       where
                            x and y = horizontal and vertical coordinates
                         ε , ε , etc. = strain components
                             yy
                          xx
                           u  and u  = displacement components
                                  y
                            x
                         Stress-strain relationships:
                          1. Plane strain

                                                         E
                                               σ xx  =  +  ν (1  −  ν)(1 2  )  [(1 −  νε + )  xx  νε ]  (A2.2a)
                                                                           yy
                                                         E
                                               σ yy  =  +  ν (1  −  ν)(1 2  ) [(1 −  νε + )  yy  νε ]  (A2.2b)
                                                                           xx
                                                            E
                                                τ  xy  µ =  ε  xy  = 2  ε xy                    (A2.2c)
                                                           1 + ν
                                               σ  zz  ν  σ=  xx  σ + (  yy )                    (A2.2d)
                                                ε  zz  ε =  xz  ε =  yz  τ =  xz  τ =  yz =  0  (A2.2e)


                       where
                         σ and τ = normal and shear stress components
                              E = Young’s modulus
                              µ = shear modulus
                              υ = Poisson’s ratio

                          2. Plane stress
                                                           E
                                                     σ =       [ ε  xx  ν +  ε  yy ]            (A2.3a)
                                                       xx
                                                          1 − ν 2
                                                           E
                                                     σ yy  =   [ ε  yy  ν +  ε  xx ]            (A2.3b)
                                                          1 − ν 2
                                                                 E
                                                     τ  xy  µ =  ε  xy  = 2  ε xy               (A2.3c)
                                                                1 + ν
                                                           − ν
                                                      ε =     ( ε  xx  ε +  yy )                (A2.3d)
                                                       zz
                                                          1 − ν
                                                   σ  zz  ε =  xz  ε =  yz  τ =  xz  τ =  yz  =  0  (A2.3e)
   104   105   106   107   108   109   110   111   112   113   114