Page 233 - From Smart Grid to Internet of Energy
P. 233
206 From smart grid to internet of energy
[8] S.J. Isaac, G.P. Hancke, H. Madhoo, A. Khatri, A survey of wireless sensor network applica-
tions from a power utility’s distribution perspective, in: AFRICON, 2011, 2011, pp. 1–5,
https://doi.org/10.1109/AFRCON.2011.6072184.
[9] Z. Zhu, S. Lambotharan, W.H. Chin, Z. Fan, Overview of demand management in smart grid
and enabling wireless communication technologies. IEEE Wirel. Commun. 19 (2012) 48–56,
https://doi.org/10.1109/MWC.2012.6231159.
[10] T. Li, J. Ren, X. Tang, Secure wireless monitoring and control systems for smart grid and smart
home. IEEE Wirel. Commun. 19 (2012) 66–73, https://doi.org/10.1109/MWC.2012.
6231161.
[11] A. Nazim, D. Benot, T. Fabrice, Bandwidth and energy consumption tradeoff for IEEE
802.15.4 in multihop topologies. in: M. Matin (Ed.), Wireless Sensor Networks—Technology
and Applications, InTech, 2012https://doi.org/10.5772/48295.
[12] W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor
networks. in: Proceedings Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 3, 2002, pp. 1567–1576, https://doi.org/10.1109/
INFCOM.2002.1019408.
[13] W. Ye, F. Silva, J. Heidemann, Ultra-low duty cycle MAC with scheduled channel polling,
in: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems,
ACM, 2006, pp. 321–334.
[14] F. Cuomo, E. Cipollone, A. Abbagnale, Performance analysis of IEEE 802.15.4 wireless sen-
sor networks: an insight into the topology formation process. Comput. Netw. 53 (2009)
3057–3075, https://doi.org/10.1016/j.comnet.2009.07.016.
[15] Bluetooth, Bluetooth Core Specification V 5.0, https://goo.gl/Na3aco, 2016.
[16] S.S. Kulkarni, M. Arumugam, J. Zheng, M.J. Lee, S. Ci, H. Sharif, K. Nuli, P. Raviraj, Lower
layer issues—MAC, scheduling, and transmission, in: S. Phoha, T. LaPorta, C. Griffin (Eds.),
Sensor Network Operations, John Wiley & Sons, Inc, 2006, pp. 185–261, https://doi.org/
10.1002/9780471784173.ch4.
[17] A. Willig, Placement of relayers in wireless industrial sensor networks: an approximation algo-
rithm. in: 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), 2014, pp. 1–6, https://doi.org/10.1109/ISSNIP.
2014.6827685.
[18] IEEE, IEEE Standard for Low-Rate Wireless Networks, IEEE Std 802.15.4–2015 (Revision of
IEEE Std 802.15.4–2011). (2016) pp. 1–709, https://doi.org/10.1109/IEEESTD.
2016.7460875.
[19] IEEE, IEEE 802.15 WPAN Task Group 4g (TG4g) Smart Utility Networks, https://goo.gl/
Bg35dt, 2019.
[20] Wi-SUN Alliance, https://goo.gl/45uAw9, 2019.
[21] IEEE, IEEE Draft Standard for Local and metropolitan area networks Part15.4, in: Low-Rate
Wireless Personal Area Networks (WPANs) Amendment Physical Layer Specifications for
Low Energy, Critical Infrastructure Monitoring Networks (LECIM), IEEE P802.15.4k/D5,
2013.
[22] U. Raza, P. Kulkarni, M. Sooriyabandara, Low power wide area networks: an overview.
IEEE Commun. Surv. Tutorials 19 (2017) 855–873, https://doi.org/10.1109/COMST.
2017.2652320.
[23] K.S. Kwak, B. Shen, Y. Jin, K.J. Kim, R. Yang, H. Lee, J. Huh, Legacy Based PHY Design for
LECIM, IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs),
https://goo.gl/qr2vWt, 2011.