Page 287 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 287

266     Fundamentals of Magnetic Thermonuclear Reactor Design


            l  norm  H :
 H∞                    ∞
                                             ( ),
 H∞=maxw∈0,∞σ¯(w),               H  ∞  =  max σω                       (8.39)
                                         , 0 )
                                       ∈
                                      ω [ ∞
 H(jΩ)         where ()σ ω  is the maximum singular value of matrix Hj( Ω ), that is, the square
 σ¯(w)
                                                              T
                                                                         Ω
                                                                  J )
                                                                       (
 HT (−JΩ) H(JΩ)  root of the maximum eigenvalue of hermitian matrix  H (−Ω  HJ ).
               For the SISO problem
                                                 ω
 H∞=maxw∈0,∞H(jw);                  H  ∞  =  max  H( ) ;               (8.40)
                                             , 0 )
                                         ω [ ∞
                                          ∈
 HS 12      l  weighted norm  HS 1 2
                             1   ∞
                                    
                                                     Hjω) (
                                      T
                                              T
                          =     ∫  tr S (− jω) H (− jω) (  Sjω)   dω
                     HS 1 2           1                   1
 HS =12π∫−∞∞trS1T−jwHT−jwHjwS jwdw   2π  −∞
 1
 12
                             1   ∞
                                    
                                       (
                                                  T
                          =     ∫  tr Hjω) S 1 ( jω) S (− jω) H (−  jω)   d ,
                                                          T
                                                                  ω
                                    
 =12π∫−∞∞trHjwS jwS1T−jwHT−jw dw,  2π  −∞         1
 1
                             1   ∞
                                           S ω ()
                                       (
                                                  T
                                                          ω
 HS =12π∫−∞∞trHjwSνwHT−jw dw   ,  HS 1 2  =  2π ∫ −∞ tr   Hjω) ν  H (−  jω)   d ,  (8.41)
 12
                                      ω
                                  T
                              ω
                             (
 Sν(w)=S (jw)S1T(−jw)  where S ()ω =  Sj ) S (−  j ). For the SISO problem
                     ν
                            1
                                  1
 1
                                      1  ∞        2
                                             (
                                                         ω
 2
 HS =12π∫−∞∞Hjw Svw dw,      HS 1 2  =  2π ∫ −∞  Hjω)  S v ω () d ,    (8.42)
 12
               where weighted norm  HS
 HS ∞                               1 ∞
 1
 HS ∞=maxw∈0,∞σ¯νw                 HS 1 ∞  =  max σω ()                (8.43)
                                                 ν
 1
                                              ∞
                                          ω∈  0, )
                                                             (
                                                                 S ω
 σ¯vw          where σ ω () is the maximum singular value of matrix Hjω) () .
                                                                  1
                      v
            8.6  PLASMA START-UP PHASE
 HjwS w     8.6.1  Dynamics of Tokamak Electromagnetic Processes
 1
            Simply put, the tokamak plasma start-up includes the breakdown of the fuel gas
            mixture, subsequent ramp-up of the generated plasma current and formation of
            closed magnetic flux surfaces. The start-up phase is paid particular attention to
            at the design of the tokamak power supply and control systems.
               First, the vortex electric field and acceptable stray magnetic fields required
            for plasma breakdown specify the critical operational conditions for the power
            supply of poloidal field coils (PFCs). Second, at the start-up phase the ionisa-
            tion and radiation ‘barriers’ should be overcome. For this purpose the auxiliary
            heating (electron cyclotron resonance power) can be used. These challenges
            make the transient plasma control problem a special case of mathematical
            modelling.
   282   283   284   285   286   287   288   289   290   291   292