Page 330 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 330
308 Fundamentals of Magnetic Thermonuclear Reactor Design
FFHR-2 Japan 1 0.09 1.7 (average) V–4Cr–4Ti 5 750 LiF–BeF 2 (Be) LiF–BeF 2 (0.6) 450/550 1.4(1D) (50%) 45
EVOLVE USA. 3.5 2 (peak value) 10 (peak value) W alloy 3 1400 Li (No) Li vapour (0.037) 1100/1200 1.33(1D) (natural) 58
W/Li/He USA 3.5 2 (peak value) 7 (peak value) W alloy 3 1400 Li (No) He (12) 8/1100 1.43(1D) (35%) 57.5
V/Li/He USA 1.9 0.34 2.9 (average) V–4Cr–4Ti 3 700 Li (No) He (18) 400/650 1.4(1D) (natural) 46
TABLE 10.3 Design Characteristics of Next-Generation Fusion Blanket Concepts
ARIES-AT USA 1.7 0.26 3.2 (peak value) SiC f /SiC 4 + 1 1000 Pb–17Li (No) Pb–17Li (1) 654/1100 1.1(3D) (natural) 58.5
TAURO EU 3 0.5 2.8 (peak value) SiC f /SiC 3 1000 Pb–17Li (No) Pb–17Li (1.5) 750/950 >1.05(3D) (90%) ∼55
HCPB EU 4.5 0.6 (peak value) 2.76 (average) SiC f /SiC 3 1300 Li 4 SiO 4 (Be) He (8) 350/700 1.09(3D) (optimised) 44.8
SSTR-2 Japan 4 1.4 6 (average) SiC f /SiC 4–6 1100 Li 2 TiO 3 (Be) He (10) 600/900 1.37(1D) (natural) 51 a Results of neutron calculations in the 1D and 3D approximations.
Characteristics Fusion power (GW) Heat flux on FW (MW/m 2 ) Neutron flux on FW (MW/m 2 ) Structural material FW thickness (mm) FW maximum temperature (°C) Breeder/multiplier Coolant pressure (MPa) Coolant inlet/exit temperature (°C) TBR ( 6 Li enrichment) a Conversion efficiency (%)