Page 167 - Fundamentals of Ocean Renewable Energy Generating Electricity From The Sea
P. 167
Other Forms of Ocean Energy Chapter | 6 155
[4] Z. Defne, K.A. Haas, H.M. Fritz, L. Jiang, S.P. French, X. Shi, B.T. Smith, V.S. Neary, K.M.
Stewart, National geodatabase of tidal stream power resource in USA, Renew. Sustain. Energy
Rev. 16 (5) (2012) 3326–3338.
[5] C.F. Lowcher, M. Muglia, J.M. Bane, R. He, Y. Gong, S.M. Haines, Marine hydrokinetic
energy in the Gulf Stream off North Carolina: an assessment using observations and
ocean circulation models, in: Marine Renewable Energy, Springer, New York, NY, 2017,
pp. 237–258.
[6] H.L. Bryden, L.M. Beal, L.M. Duncan, Structure and transport of the Agulhas Current and its
temporal variability, J. Oceanogr. 61 (3) (2005) 479–492.
[7] I. Meyer, L. Braby, M. Krug, B. Backeberg, Mapping the ocean current strength and
persistence in the Agulhas to inform marine energy development, in: Marine Renewable
Energy, Springer, New York, NY, 2017, pp. 179–215.
[8] J.M. Bane, R. He, M. Muglia, C.F. Lowcher, Y. Gong, S.M. Haines, Marine hydrokinetic
energy from western boundary currents, Ann. Rev. Marine Sci. 9 (2017) 105–123.
[9] C.S. Meinen, M.O. Baringer, R.F. Garcia, Florida Current transport variability: an analysis of
annual and longer-period signals, Deep Sea Res. Part I 57 (7) (2010) 835–846.
[10] U.S. Department of the Interior, Technology White Paper on Ocean Current Energy Potential
on the U.S. Outer Continental Shelf, 2006.
[11] F. Chen, Kuroshio power plant development plan, Renew. Sustain. Energy Rev. 14 (9) (2010)
2655–2668.
[12] K. Shirasawa, K. Tokunaga, H. Iwashita, T. Shintake, Experimental verification of a floating
ocean-current turbine with a single rotor for use in Kuroshio currents, Renew. Energy 91
(2016) 189–195.
[13] K. Haas, Assessment of Energy Production Potential From Ocean Currents Along the United
States Coastline, Georgia Tech Research Corporation, 2013.
[14] International Renewable Energy Agency, Ocean Thermal Energy Conversion—Technology
Brief 1, 2014.
[15] G.A. Pagnoni, S. Roche, The Renaissance of Renewable Energy, Cambridge University Press,
Cambridge, 2015.
[16] G.C. Nihous, An order-of-magnitude estimate of ocean thermal energy conversion resources,
J. Energy Resour. Technol. 127 (4) (2005) 328–333.
[17] International Renewable Energy Agency, Salinity Gradient Energy—Technology Brief 2,
2014.
[18] F. Helfer, C. Lemckert, The power of salinity gradients: an Australian example, Renew.
Sustain. Energy Rev. 50 (2015) 1–16.
FURTHER READING
[1] K. Haas, X. Yang, V. Neary, B. Gunawan, Ocean current energy resource assessment for the
Gulf stream system: the Florida Current, in: Marine Renewable Energy, Springer, New York,
NY, 2017, pp. 217–236.
[2] I. Meyer, J.L. Van Niekerk, Towards a practical resource assessment of the extractable energy
in the Agulhas ocean current, Int. J. Marine Energy 16 (2016) 116–132.
[3] K. Rajagopalan, G.C. Nihous, Estimates of global Ocean Thermal Energy Conversion (OTEC)
resources using an ocean general circulation model, Renew. Energy 50 (2013) 532–540.
[4] P. Stenzel, Potentiale der Osmose zur Erzeugung und Speicherung von Elektrizität (Potential of
Osmosis for Production and Storage of Electricity), vol. 4, LIT Verlag, Münster, 2012.