Page 167 - Fundamentals of Ocean Renewable Energy Generating Electricity From The Sea
P. 167

Other Forms of Ocean Energy Chapter | 6 155


              [4] Z. Defne, K.A. Haas, H.M. Fritz, L. Jiang, S.P. French, X. Shi, B.T. Smith, V.S. Neary, K.M.
                 Stewart, National geodatabase of tidal stream power resource in USA, Renew. Sustain. Energy
                 Rev. 16 (5) (2012) 3326–3338.
              [5] C.F. Lowcher, M. Muglia, J.M. Bane, R. He, Y. Gong, S.M. Haines, Marine hydrokinetic
                 energy in the Gulf Stream off North Carolina: an assessment using observations and
                 ocean circulation models, in: Marine Renewable Energy, Springer, New York, NY, 2017,
                 pp. 237–258.
              [6] H.L. Bryden, L.M. Beal, L.M. Duncan, Structure and transport of the Agulhas Current and its
                 temporal variability, J. Oceanogr. 61 (3) (2005) 479–492.
              [7] I. Meyer, L. Braby, M. Krug, B. Backeberg, Mapping the ocean current strength and
                 persistence in the Agulhas to inform marine energy development, in: Marine Renewable
                 Energy, Springer, New York, NY, 2017, pp. 179–215.
              [8] J.M. Bane, R. He, M. Muglia, C.F. Lowcher, Y. Gong, S.M. Haines, Marine hydrokinetic
                 energy from western boundary currents, Ann. Rev. Marine Sci. 9 (2017) 105–123.
              [9] C.S. Meinen, M.O. Baringer, R.F. Garcia, Florida Current transport variability: an analysis of
                 annual and longer-period signals, Deep Sea Res. Part I 57 (7) (2010) 835–846.
             [10] U.S. Department of the Interior, Technology White Paper on Ocean Current Energy Potential
                 on the U.S. Outer Continental Shelf, 2006.
             [11] F. Chen, Kuroshio power plant development plan, Renew. Sustain. Energy Rev. 14 (9) (2010)
                 2655–2668.
             [12] K. Shirasawa, K. Tokunaga, H. Iwashita, T. Shintake, Experimental verification of a floating
                 ocean-current turbine with a single rotor for use in Kuroshio currents, Renew. Energy 91
                 (2016) 189–195.
             [13] K. Haas, Assessment of Energy Production Potential From Ocean Currents Along the United
                 States Coastline, Georgia Tech Research Corporation, 2013.
             [14] International Renewable Energy Agency, Ocean Thermal Energy Conversion—Technology
                 Brief 1, 2014.
             [15] G.A. Pagnoni, S. Roche, The Renaissance of Renewable Energy, Cambridge University Press,
                 Cambridge, 2015.
             [16] G.C. Nihous, An order-of-magnitude estimate of ocean thermal energy conversion resources,
                 J. Energy Resour. Technol. 127 (4) (2005) 328–333.
             [17] International Renewable Energy Agency, Salinity Gradient Energy—Technology Brief 2,
                 2014.
             [18] F. Helfer, C. Lemckert, The power of salinity gradients: an Australian example, Renew.
                 Sustain. Energy Rev. 50 (2015) 1–16.

             FURTHER READING
             [1] K. Haas, X. Yang, V. Neary, B. Gunawan, Ocean current energy resource assessment for the
                Gulf stream system: the Florida Current, in: Marine Renewable Energy, Springer, New York,
                NY, 2017, pp. 217–236.
             [2] I. Meyer, J.L. Van Niekerk, Towards a practical resource assessment of the extractable energy
                in the Agulhas ocean current, Int. J. Marine Energy 16 (2016) 116–132.
             [3] K. Rajagopalan, G.C. Nihous, Estimates of global Ocean Thermal Energy Conversion (OTEC)
                resources using an ocean general circulation model, Renew. Energy 50 (2013) 532–540.
             [4] P. Stenzel, Potentiale der Osmose zur Erzeugung und Speicherung von Elektrizität (Potential of
                Osmosis for Production and Storage of Electricity), vol. 4, LIT Verlag, Münster, 2012.
   162   163   164   165   166   167   168   169   170   171   172