Page 282 - Fundamentals of Ocean Renewable Energy Generating Electricity From The Sea
P. 282
Optimization Chapter | 9 269
[22] M. Rahm, O. Svensson, C. Boström, R. Waters, M. Leijon, Experimental results from the
operation of aggregated wave energy converters, IET Renew. Power Gener. 6 (3) (2012)
149–160.
[23] J. Cruz, R. Sykes, P. Siddorn, R.E. Taylor, Wave farm design: preliminary studies on
the influences of wave climate, array layout and farm control, in: Proceedings of the
8th European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden, 2009,
pp. 736–745.
[24] B.F.M. Child, J. Cruz, M. Livingstone, Development of a tool for optimising arrays of wave
energy converters, in: Proceedings of the 9th European Wave and Tidal Energy Conference
(EWTEC), Southampton, UK, 2011, pp. 5–9.
[25] M. Göteman, J. Engström, M. Eriksson, J. Isberg, Optimizing wave energy parks with over
1000 interacting point-absorbers using an approximate analytical method, Int. J. Mar. Energy
10 (2015) 113–126.
[26] J. Engström, M. Eriksson, M. Göteman, J. Isberg, M. Leijon, Performance of large arrays
of point absorbing direct-driven wave energy converters, J. Appl. Phys. 114 (20) (2013)
204502.
[27] G. Sinden, Variability of UK Marine Resources, The Carbon Trust, London, 2005.
[28] A.S. Iyer, S.J. Couch, G.P. Harrison, A.R. Wallace, Variability and phasing of tidal current
energy around the United Kingdom, Renew. Energy 51 (2013) 343–357.
[29] S.P. Neill, M.R. Hashemi, M.J. Lewis, Optimal phasing of the European tidal stream resource
using the greedy algorithm with penalty function, Energy 73 (2014) 997–1006.
[30] S.P. Neill, M.R. Hashemi, M.J. Lewis, Tidal energy leasing and tidal phasing, Renew. Energy
85 (2016) 580–587.
[31] N. Yates, I. Walkington, R. Burrows, J. Wolf, Appraising the extractable tidal energy resource
of the UK’s western coastal waters, Philos. Trans. R. Soc. A 371 (1985) (2013) 20120181.
[32] A. Angeloudis, R.A. Falconer, Sensitivity of tidal lagoon and barrage hydrodynamic impacts
and energy outputs to operational characteristics, Renew. Energy 114 (2017) 337–351.
[33] C. Perez-Collazo, D. Greaves, G. Iglesias, A review of combined wave and offshore wind
energy, Renew. Sustain. Energy Rev. 42 (2015) 141–153.
[34] S.P. Neill, M.R. Hashemi, Wave power variability over the northwest European shelf seas,
Appl. Energy 106 (2013) 31–46.
[35] E.D. Stoutenburg, N. Jenkins, M.Z. Jacobson, Power output variations of co-located offshore
wind turbines and wave energy converters in California, Renew. Energy 35 (12) (2010)
2781–2791.
[36] L. Cradden, H. Mouslim, O. Duperray, D. Ingram, Joint exploitation of wave and offshore wind
power, in: Proceedings of the 9th European Wave and Tidal Energy Conference (EWTEC),
Southampton, UK, 2011, pp. 1–10.
[37] R. Sen, S.C. Bhattacharyya, Off-grid electricity generation with renewable energy technolo-
gies in India: an application of HOMER, Renew. Energy 62 (2014) 388–398.
[38] C. Budischak, D. Sewell, H. Thomson, L. Mach, D.E. Veron, W. Kempton, Cost-minimized
combinations of wind power, solar power and electrochemical storage, powering the grid up
to 99.9% of the time, J. Power Sources 225 (2013) 60–74.
[39] T. Divett, R. Vennell, C. Stevens, Optimization of multiple turbine arrays in a channel with
tidally reversing flow by numerical modelling with adaptive mesh, Philos. Trans. R. Soc. A
371 (1985) (2013) 20120251.
[40] S.W. Funke, P.E. Farrell, M.D. Piggott, Tidal turbine array optimisation using the adjoint
approach, Renew. Energy 63 (2014) 658–673.