Page 325 - Fundamentals of Ocean Renewable Energy Generating Electricity From The Sea
P. 325
Other Aspects of Ocean Renewable Energy Chapter | 10 307
[19] J.A. Church, N.J. White, Sea-level rise from the late 19th to the early 21st century, Surv.
Geophys. 32 (4–5) (2011) 585–602.
[20] H.E. Pelling, J.A. Mattias Green, Sea level rise and tidal power plants in the Gulf of Maine, J.
Geophys. Res. Oceans 118 (6) (2013) 2863–2873.
[21] H.E. Pelling, J.A.M. Green, Impact of flood defences and sea-level rise on the European Shelf
tidal regime, Cont. Shelf Res. 85 (2014) 96–105.
[22] M.D. Pickering, K.J. Horsburgh, J.R. Blundell, J.J.-M. Hirschi, R.J. Nicholls, M. Verlaan, N.C.
Wells, The impact of future sea-level rise on the global tides, Cont. Shelf Res. 142 (2017)
50–68.
[23] M. De Dominicis, R. O’Hara Murray, J. Wolf, Present and future impacts of large tidal stream
turbine arrays, in: The 12th European Wave and Tidal Energy Conference: EWTEC 2017,
2017.
[24] M.R. Hashemi, M. Lewis, Wave-tide interactions in ocean renewable energy, in: Marine
Renewable Energy, Springer, 2017, pp. 137–158.
[25] M.R. Hashemi, S.T. Grilli, S.P. Neill, A simplified method to estimate tidal current effects on
the ocean wave power resource, Renew. Energy 96 (2016) 257–269.
[26] M.R. Hashemi, S.P. Neill, P.E. Robins, A.G. Davies, M.J. Lewis, Effect of waves on the tidal
energy resource at a planned tidal stream array, Renew. Energy 75 (2015) 626–639.
[27] R.A. Dalrymple, R.G. Dean, Water wave mechanics for engineers and scientists, World
Scientific, Singapore, 1991.
[28] L.C. Van Rijn, Unified view of sediment transport by currents and waves. I: initiation of
motion, bed roughness, and bed-load transport, J. Hydraul. Eng. 133 (6) (2007) 649–667.
[29] R. Soulsby, Dynamics of Marine Sands: A Manual for Practical Applications, Thomas Telford,
UK, 1997.
[30] N. Guillou, G. Chapalain, S.P. Neill, The influence of waves on the tidal kinetic energy
resource at a tidal stream energy site, Appl. Energy 180 (2016) 402–415.
[31] International Electrotechnical Commission, IEC 62600-201 TS: marine energy—wave, tidal
and other water current converters—Part 201: tidal energy resource assessment and character-
ization, Technical Report, 2014.
[32] M.Z. Jacobson, C.L. Archer, Saturation wind power potential and its implications for wind
energy, Proc. Natl Acad. Sci. USA 109 (39) (2012) 15679–15684.
[33] S. Nash, A. Phoenix, A review of the current understanding of the hydro-environmental
impacts of energy removal by tidal turbines, Renew. Sustain. Energy Rev. 80 (2017)
648–662.
[34] I.G. Bryden, S.J. Couch, ME1—marine energy extraction: tidal resource analysis, Renew.
Energy 31 (2) (2006) 133–139.
[35] S.P. Neill, E.J. Litt, S.J. Couch, A.G. Davies, The impact of tidal stream turbines on large-scale
sediment dynamics, Renew. Energy 34 (12) (2009) 2803–2812.
[36] C. Garrett, P. Cummins, Limits to tidal current power, Renew. Energy 33 (11) (2008)
2485–2490.
[37] P.E. Robins, S.P. Neill, M.J. Lewis, Impact of tidal-stream arrays in relation to the natural
variability of sedimentary processes, Renew. Energy 72 (2014) 311–321.
[38] S.P. Neill, J.R. Jordan, S.J. Couch, Impact of tidal energy converter (TEC) arrays on the
dynamics of headland sand banks, Renew. Energy 37 (1) (2012) 387–397.
[39] A.J.G. Brown, S.P. Neill, M.J. Lewis, Tidal energy extraction in three-dimensional ocean
models, Renew. Energy 114 (2017) 244–257.
[40] T. Roc, D.C. Conley, D. Greaves, Methodology for tidal turbine representation in ocean
circulation model, Renew. Energy 51 (2013) 448–464.

