Page 116 - Fundamentals of Probability and Statistics for Engineers
P. 116

Expectations and Moments                                         99
           4.5.1 GENERATION OF  MOMENTS


           One of the important uses of characteristic functions is in the determination of
           the moments of a random variable. Expanding   X  (t) as a MacLaurin series, we
           see that (suppressing the subscript X  for convenience)

                                             t 2       …n†  t n
                                          00
                                  0
                      …t†ˆ  …0†‡   …0†t ‡   …0†  ‡     ‡   …0†  ‡ ... ;  …4:49†
                                              2             n!
           where the primes denote derivatives. The coefficients of this power series are,
           from Equation (4.47),

                                 1
                               Z                                9
                          …0†ˆ     f …x†dx ˆ 1;                 >
                                    X                           >
                                                                >
                                 1                              >
                                                                >
                                                                >
                                                                >
                                                                >
                                          Z  1                  >
                                                                >
                          0
                          …0†ˆ  d …t†      ˆ  jxf …x†dx ˆ j  1 ;  >
                                                                >
                                                X
                                                                >
                                 dt                             >
                                                                =
                                     tˆ0    1
                                                                         …4:50†
                            .                                   >
                            .                                   >
                                                                >
                            .                                   >
                                                                >
                                                                >
                                                                >
                                                                >
                                                                >
                                n          Z  1                 >
                                                                >
                                                            n
                                                                >
                        …n†
                                               n n
                         …0†ˆ  d  …t†      ˆ   j x f …x†dx ˆ j   n : ;
                                                                >
                                                                >
                                                   X
                                 dt n
                                      tˆ0    1
           Thus,
                                             1    n
                                            X  … jt†   n
                                   …t†ˆ 1 ‡          :                   …4:51†
                                                 n!
                                            nˆ1
           The same results are obtained when X  is discrete.
             Equation (4.51) shows that moments of all orders, if they exist, are contained

           in the expansion of  (t), and these moments can be found from  (t) through

           differentiation. Specifically, Equations (4.50) give
                                      n …n†
                                  n ˆ j   …0†; n ˆ 1; 2; ... :           …4:52†
             Example 4.14. Problem:  determine   (t),  the mean,  and  the variance of  a




           random variable X  if it has the binomial distribution
                                   n  k      n k

                          p …k†ˆ     p …1   p†  ; k ˆ 0; 1; ... ; n:
                           X
                                   k
                                                                            TLFeBOOK
   111   112   113   114   115   116   117   118   119   120   121