Page 117 - Fundamentals of Probability and Statistics for Engineers
P. 117

100                    Fundamentals of Probability and Statistics for Engineers

             Answer: according to Equation (4.46),
                                       n
                                             n
                                      X   jtk     k    n k
                                X …t†ˆ   e     p …1   p†
                                             k
                                      kˆ0
                                       n
                                          n
                                      X                n k              …4:53†
                                               jt k
                                   ˆ        …pe † …1   p†
                                          k
                                      kˆ0
                                                  n
                                         jt
                                   ˆ‰ pe ‡…1   p†Š :
           Using Equation (4.52), we have

                       1 d             n                    n 1
                             jt
                                                  jt
                    1 ˆ    ‰ pe ‡…1   p†Š     ˆ n‰ pe ‡…1   p†Š  …pe †
                                                                 jt
                       j dt
                                         tˆ0                       tˆ0
                     ˆ np;
                          2
                         d     jt        n
                    2 ˆ     ‰ pe ‡…1   p†Š     ˆ np‰…n   1†p ‡ 1Š;
                         dt 2
                                          tˆ0
           and
                                                 2 2
                   2
                             2
                    ˆ   2     ˆ np‰…n   1†p ‡ 1Š  n p ˆ np…1   p†:
                   X         1
           The results for the mean and variance are the same as those obtained in
           Examples 4.1 and 4.5.




             Example 4.15. Problem: repeat the above when X  is exponentially distributed
           with density function
                                           ax
                                        ae  ;  for x   0;
                              f …x†ˆ
                               X
                                        0;  elsewhere:
             Answer: the characteristic function   X  (t) in this case is
                         Z  1               Z  1             a
                              jtx
                    X …t†ˆ   e …ae  ax †dx ˆ a  e  …a jt†x dx ˆ  :      …4:54†
                          0                  0             a   jt
           The moments are
                                               "       #

                             1 d    a         1    ja         1

                          1 ˆ               ˆ               ˆ ;
                             j dt a   jt      j …a   jt† 2    a
                                         tˆ0             tˆ0
                               d 2     a        2
                          2 ˆ                ˆ   ;
                               dt 2  a   jt     a 2
                                          tˆ0
                                       1
                         2
                                   2
                          ˆ   2     ˆ    ;
                         X         1   2
                                      a
           which agree with the moment calculations carried out in Examples 4.2 and 4.6.
                                                                            TLFeBOOK
   112   113   114   115   116   117   118   119   120   121   122