Page 138 - Fundamentals of Probability and Statistics for Engineers
P. 138
Functions of Random Variables 121
5.1.1.1 Discrete Random Variables
Let us first dispose of the case when X is a discrete random variable, since it
requires only simple point-to-point mapping. Suppose that the possible values
taken by X can be enumerated as x 1 , x 2 ,.. .. Equation (5.2) shows that the
corresponding possible values of Y may be enumerated as y 1 g(x 1 ), y 2
g(x 2 ), . . . . Let the pmf of X be given by
p
x i p i ; i 1; 2; ... :
5:3
X
The pmf of y is simply determined as
p
y i p g
x i p i ; i 1; 2; ... :
5:4
Y
Y
Example 5.1. Problem: the pmf of a random variable X is given as
8
1
> ; for x
1;
2
>
>
>
>
> 1
> ; for x 0;
<
p
x 4
X 1
> ; for x 1;
8
>
>
>
>
1
>
>
: ; for x 2;
8
Determine the pmf of Y if Y is related to X by Y 2X 1.
Answer: the corresponding values of Y are: g( 1) 2( 1) 1
1;
g(0) 1; g(1) 3; and g(2) 5. Hence, the pmf of Y is given by
1
8
> ; for y
1;
2
>
>
>
>
> 1
> ; for y 1;
<
p
y 4
Y
> 1 ; for y 3;
>
> 8
>
1
>
>
>
: ; for y 5.
8
Example 5.2. Problem: for the same X as given in Example 5.1, determine the
pmf of Y if Y 2X 1.
2
2
Answer: in this case, the corresponding values of Y are: g( 1) 2( 1)
1 3; g(0) 1; g(1) 3; and g(2) 9, resulting in
1 ; for y 1;
8
4
>
>
>
<
p
y 5 1 1 ; for y 3;
Y
> 8 2 8
>
1
>
: ; for y 9:
8
TLFeBOOK