Page 138 - Fundamentals of Probability and Statistics for Engineers
P. 138

Functions of Random Variables                                   121

           5.1.1.1  Discrete Random Variables

           Let us first dispose of the case when X  is a discrete random variable, since it
           requires only simple point-to-point mapping. Suppose that the possible values
           taken  by  X  can  be  enumerated  as  x 1 , x 2 ,.. ..  Equation  (5.2)  shows  that  the
           corresponding  possible  values  of  Y   may  be  enumerated  as  y 1 ˆ  g(x 1 ), y 2  ˆ
           g(x 2 ), . . . . Let the pmf of X be given by

                                 p …x i †ˆ p i ;  i ˆ 1; 2; ... :        …5:3†
                                  X
           The pmf of y is simply determined as
                            p …y i †ˆ p ‰g…x i †Š ˆ p i ;  i ˆ 1; 2; ... :  …5:4†
                             Y
                                     Y




             Example 5.1. Problem: the pmf of a random variable X  is given as
                                       8
                                         1
                                       >   ;  for x ˆ
1;
                                         2
                                       >
                                       >
                                       >
                                       >
                                       >  1
                                       >   ;  for x ˆ 0;
                                       <
                                p …x†ˆ   4
                                 X       1
                                       >   ;  for x ˆ 1;
                                         8
                                       >
                                       >
                                       >
                                       >
                                         1
                                       >
                                       >
                                       :   ;  for x ˆ 2;
                                         8
           Determine the pmf of Y  if Y  is related to X  by Y ˆ  2X ‡  1.


             Answer:  the  corresponding  values  of  Y   are:  g(  1) ˆ  2(  1) ‡  1 ˆ
 1;
           g(0) ˆ  1; g(1) ˆ  3; and g(2) ˆ  5. Hence, the pmf of Y  is given by
                                         1
                                       8
                                       >   ;  for y ˆ
1;
                                         2
                                       >
                                       >
                                       >
                                       >
                                       >  1
                                       >   ;  for y ˆ 1;
                                       <
                                p …y†ˆ   4
                                 Y
                                       >  1  ;  for y ˆ 3;
                                       >
                                       >  8
                                       >
                                         1
                                       >
                                       >
                                       >
                                       :   ;  for y ˆ 5.
                                         8


             Example 5.2. Problem: for the same X  as given in Example 5.1, determine the


           pmf of Y  if Y ˆ  2X ‡  1.
                            2
                                                                           2
             Answer: in  this case, the corresponding values of Y  are: g(  1) ˆ  2(  1) ‡


           1 ˆ  3; g(0) ˆ  1; g(1) ˆ  3; and g(2) ˆ  9, resulting in
                                     1 ;  for y ˆ 1;
                                   8
                                     4
                                   >
                                   >
                                   >
                                   <
                            p …y†ˆ   5  ˆ  1  ‡  1  ;  for y ˆ 3;
                             Y
                                   >  8   2  8
                                   >
                                     1
                                   >
                                   :  ;  for y ˆ 9:
                                     8
                                                                            TLFeBOOK
   133   134   135   136   137   138   139   140   141   142   143