Page 183 - Fundamentals of Probability and Statistics for Engineers
P. 183

166                    Fundamentals of Probability and Statistics for Engineers

           it be given that, on average, a telephone user is on the phone 5 minutes per
           hour; an estimate of p is

                                           5   1
                                       p ˆ   ˆ   :
                                          60   12
             The solution to this problem is given by

                                               2
                                        3   1    11      3   1
                                                                3
                        p …2†‡ p …3†ˆ                ‡
                         X      X
                                        2  12    12      3  12
                                       11
                                    ˆ     ˆ 0:0197:
                                      864




             Example 6.3. Problem: let X 1  and X 2  be two independent random variables,
           both having binomial distributions with parameters (n 1 , p) and  (n 2 , p), respect-
           ively, and let Y ˆ X 1 ‡ X 2 .  Determine the distribution of random variable Y .
             Answer: the characteristic functions of X 1  and X 2  are, according to the first
           of Equations (6.8),
                                     jt   n 1          jt   n 2
                            X 1  …t†ˆ …pe ‡ q† ;  X 2 …t†ˆ …pe ‡ q† :
           In  view  of  Equation  (4.71),  the  characteristic  function  of  Y   is  simply  the
                       (t)      (t).  Thus,
           product of   X 1  and   X 2
                                                 …t†
                                    Y …t†ˆ   X 1  …t†  X 2
                                            jt
                                       ˆ…pe ‡ q†  n 1 ‡n 2 :
           By inspection, it is the characteristic function corresponding to a binomial
           distribution with parameters (n 1 ‡ n 2 , p).  Hence, we have


                              n 1 ‡ n 2  k n 1 ‡n 2  k
                      p …k†ˆ          p q     ;  k ˆ 0; 1; ... ; n 1 ‡ n 2 :
                       Y
                                 k
             Generalizing the answer to Example 6.3, we have the following important
           result as stated in Theorem 6.1.
             Theorem 6.1: The binomial distribution generates itself under addition of
           independent random variables with the same p.


             Example 6.4. Problem: if random variables X  and Y  are independent binomial



           distributed random variables with parameters (n 1 , p) and  (n 2 , p), determine the
           conditional probability mass function of X given that
                              X ‡ Y ˆ m;    0   m   n 1 ‡ n 2 :






                                                                            TLFeBOOK
   178   179   180   181   182   183   184   185   186   187   188