Page 284 - Fundamentals of Probability and Statistics for Engineers
P. 284

Parameter Estimation                                            267







             Theorem 9.2: the  Crame ´ r–Rao inequality. Let X 1 , X 2 ,... , X n  denote a sample






           of size n from a population X  with pdf f (x;  ), where  is the unknown param-
                      ^
           eter,  and  let   ˆ  h(X 1 , X 2 ,..., X n ) be an unbiased estimator for  . Then, the
                     ^
           variance of    satisfies the inequality
                                                      ))   1
                                             qlnf …X;  †   2
                                ^
                            varf g     nE                   ;            …9:26†
                                               q
           if the indicated expectation and differentiation exist. An analogous result with


           p(X ;  ) replacing f (X ;  ) is obtained when X  is discrete.
             Proof of Theorem9.2:the joint probability density function (jpdf) of X 1 , X 2 , . . .,
           and X n  is, because of their mutual independence, f  x 1 ;  ) f  x 2 ;  )      f  x n ;  ).  The
                         ^
                            ^
           mean of statistic  ,   ˆ  h X 1 , X 2 , .. . , X n ),  is
                                  ^
                               Ef gˆ Efh…X 1 ; X 2 ; ... ; X n †g;
                    ^
           and, since    is unbiased, it gives
                    Z  1  Z  1
                  ˆ            h…x 1 ; ... ; x n † f …x 1 ;  †    f …x n ;  † dx 1     dx n :  …9:27†
                      1     1
             Another relation we need is the identity:
                                  1
                                Z
                            1 ˆ     f …x i ;  † dx i ;  i ˆ 1; 2; ... ; n:  …9:28†
                                  1
           Upon differentiating both sides of each of Equations (9.27) and (9.28) with

           respect to , we have
                                "               #
               1     1            n
              Z    Z
                                 X    1   q f …x j ;  †
          1 ˆ          h…x 1 ; ... ; x n †        f …x 1 ;  †    f …x n ;  † dx 1     dx n
                1    1            jˆ1  f …x j ;  †  q
                                                                         …9:30†
                                 "            #
              Z  1  Z  1           n
                                  X  q ln f …x j ;  †
            ˆ          h…x 1 ; ... ; x n †     f …x 1 ;  †    f …x n ;  † dx 1     dx n ;
                1     1            jˆ1  q
                1
              Z   q f …x i ;  †
           0 ˆ           dx i
                1   q
                                                                         …9:30†
              Z  1  q ln f …x i ;  †
            ˆ              f …x i ;  † dx i ;  i ˆ 1; 2; ... ; n:
                1    q




                                                                            TLFeBOOK
   279   280   281   282   283   284   285   286   287   288   289