Page 284 - Fundamentals of Probability and Statistics for Engineers
P. 284
Parameter Estimation 267
Theorem 9.2: the Crame ´ r–Rao inequality. Let X 1 , X 2 ,... , X n denote a sample
of size n from a population X with pdf f (x; ), where is the unknown param-
^
eter, and let h(X 1 , X 2 ,..., X n ) be an unbiased estimator for . Then, the
^
variance of satisfies the inequality
)) 1
qlnf
X; 2
^
varf g nE ;
9:26
q
if the indicated expectation and differentiation exist. An analogous result with
p(X ; ) replacing f (X ; ) is obtained when X is discrete.
Proof of Theorem9.2:the joint probability density function (jpdf) of X 1 , X 2 , . . .,
and X n is, because of their mutual independence, f x 1 ; ) f x 2 ; ) f x n ; ). The
^
^
mean of statistic , h X 1 , X 2 , .. . , X n ), is
^
Ef g Efh
X 1 ; X 2 ; ... ; X n g;
^
and, since is unbiased, it gives
Z 1 Z 1
h
x 1 ; ... ; x n f
x 1 ; f
x n ; dx 1 dx n :
9:27
1 1
Another relation we need is the identity:
1
Z
1 f
x i ; dx i ; i 1; 2; ... ; n:
9:28
1
Upon differentiating both sides of each of Equations (9.27) and (9.28) with
respect to , we have
" #
1 1 n
Z Z
X 1 q f
x j ;
1 h
x 1 ; ... ; x n f
x 1 ; f
x n ; dx 1 dx n
1 1 j1 f
x j ; q
9:30
" #
Z 1 Z 1 n
X q ln f
x j ;
h
x 1 ; ... ; x n f
x 1 ; f
x n ; dx 1 dx n ;
1 1 j1 q
1
Z q f
x i ;
0 dx i
1 q
9:30
Z 1 q ln f
x i ;
f
x i ; dx i ; i 1; 2; ... ; n:
1 q
TLFeBOOK